
Aurora Vision Studio Aurora Vision Studio 55.6.6

User InterfaceUser Interface

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

Complexity Levels

Finding Filters

Connecting and Configuring Filters

Creating Macrofilters

Creating Models for Template Matching

Preparing Rectification Transform Map

Creating Text Segmentation Models

Creating Golden Template Models

Creating Models for Golden Template

Creating Text Recognition Models

Auto-tuning Datacode Parameters

Analysing Filter Performance

Seeing More in the Diagnostic Mode

Deploying Programs with the Runtime Application

Performing General Calculations

Managing Projects with Project Explorer

Keyboard Shortcuts

Working with 3D data

Creating Deep Learning Model

Managing Workspaces

Using Filmstrip Control

https://docs.adaptive-vision.com/5.6/studio/filters/OpticalCharacterRecognition/ExtractText.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_GenICam.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_Roseek.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_WebCamera.html
https://www.adaptive-vision.com

Complexity LevelsComplexity Levels

IntroductionIntroduction

Aurora Vision Studio has three levels of feature complexity. At lower levels we hide advanced features and
ones that may be confusing.

Available LevelsAvailable Levels

BasicBasic 3 Designed for production engineers who want to quickly build simple machine vision projects
without devoting much time to learning the full capabilities of the software.

AdvancedAdvanced 3 Designed for professional machine vision engineers who also implement challenging and
complex projects.

Expert / ScientificExpert / Scientific 3 Gives access to experimental and scientific filters (tools), which are not
recommended for typical machine vision applications, but might be useful for research purposes.

Changing Complexity LevelChanging Complexity Level

Complexity Level can be changed at any time. It can be done by clicking on the level name in the upper-
right corner of Aurora Vision Studio:

Complexity Level can also be changed in the application settings:

Finding FiltersFinding Filters

IntroductionIntroduction

There are many hundreds of ready-for-use filters (tools) in Aurora Vision Studio implementing common image
processing algorithms, planar geometry, specialized machine vision tools as well as things like basic
arithmetics or operating system functions. On the one hand, it means that you get instant access to
results of tens of thousands of programmers' work hours, but it also means that there are quite a lot of
various libraries and filter categories that you need to know. This article advises you how to cope with
that multitude and how to find filters that you need.

The most important thing to know is that there are two different catalogs of filters, designed for
different types of users:

The Toolbox's Tools view is designed for use in typical machine vision applications. It is task-oriented,
most filters are grouped into tools and they are supported with intuitive illustrations. This makes it
easy to find the filters you need the most. It does not, however, contain all the advanced filters, which
might be required in more challenging applications. To access the complete list of filters, you should use
the Toolbox's Libraries view. This catalog is organized in libraries, categories and subcategories. Due to
its comprehensiveness, it usually takes more time to find what you need, but there is also an advanced
text-based search engine, which is very useful if you can guess a part of the filter name.

ToolboxToolbox

SectionsSections

When you use the Toolbox's Tools view, the general idea is that you will most probably start with a filter
(tool) from the first section, Image Acquisition, and then follow with filters from consecutive sections:

1. Image AcquisitionImage Acquisition
3 Acquiring images from cameras, frame grabbers or files.

2. Image Acquisition (Third Party)Image Acquisition (Third Party)
3 Acquiring images from third-party cameras.

3. Image ProcessingImage Processing
3 Image conversions, enhancements, transformations etc.

4. Region AnalysisRegion Analysis
3 Operations on pixel sets representing foreground objects (blobs).

5. Computer Vision 2DComputer Vision 2D
3 Specialized tools for high-level image analysis and measurements.

6. Computer Vision 3DComputer Vision 3D
3 Specialized tools for analysis of 3D point clouds.

7. Deep LearningDeep Learning
3 Self-learning tools based on deep neural networks.

8. Geometry 2DGeometry 2D
3 Filters for constructing, transforming and analysing primitives of 2D geometry.

9. Geometry 3DGeometry 3D
3 Filters for constructing, transforming and analysing primitives of 3D geometry.

10. Logic & MathLogic & Math
3 Numerical calculations, arrays and conditional data processing.

11. Program StructureProgram Structure
3 Category contains the basic program structure elements.

12. File SystemFile System
3 Filters for working with files on disk.

13. Program I/OProgram I/O
3 Filters for communication with external devices.

Toolbox's Tools view(for typical applications) Toolbox's Libraries view (for advanced users)

https://docs.adaptive-vision.com/5.6/studio/filters/FilterReference.html

Choosing Filter from ToolsChoosing Filter from Tools

A tool is a collection of related filters. The process of selecting a filter from the Toolbox thus
consists of two steps:

1. First you select a tool in the Toolbox, e.g. "Fit Shape".

2. Then you select a filter from the tool in the "Choose Filter of Group" window.

Choosing a filter from a tool (Toolbox).

This dialog can have several sections (e.g. "Fit Segment", "Fit Circle" etc.)

Changing filter variant.

The Search BoxThe Search Box

If you know a part of the name of the filter (tool) that you need, or if you can guess it, the Filter
Search Box will make your work much more efficient. Just enter the searched text there and you will get a
list of filters with most relevant matches at the top:

The Search Box and search results in the Toolbox's Libraries view.

If you can not guess the filter name, but you know what you expect on the inputs and outputs, you can use
special queries with "in:" and "out:" operators as the image below depicts:

Advanced search with expected inputs and outputs.

As a matter of fact, some advanced users of Aurora Vision Studio stop browsing the categories and just
type the filter names in the Search Box to have them quickly added to the program.

Program EditorProgram Editor

Ctrl+Space / Ctrl+TCtrl+Space / Ctrl+T

When you know the name of a filter, which you would like to add into your program, you can use a keyboard
shortcut Ctrl+SpaceCtrl+Space or Ctrl+TCtrl+T to find it straightaway in the Program Editor, without having to open the
Toolbox's Libraries view. After applying this shortcut, you are prompted to type a filter name:

Advanced search using CTRL+SPACE shortcut.

Let us assume that you need to perform simple thresholding on your input image. You already know that
there is a ThresholdToRegion filter in our library, which you have utilized many times so far. Instead of
time-consuming searching in either Toolbox's Tools view or Libraries view, you can quickly access the
desired function by typing its name:

Browsing for a particular filter.

If you do not remember well the name of a filter, you can track it as well by typing only a part of it:

Searching a filter without its full name.

The search engine in the Program Editor also allows you to display the description of a filter in case you
want to make sure or remind yourself what the filter is for:

The description of a filter.

Search WindowSearch Window

Ctrl+FCtrl+F

Creating a large program in Aurora Vision Studio may require finding elements in it's structure. Using
Search Window is the best way to find Filters (tools), Macrofilters, Variants and Global parameters which
already exist in the project. To open the search window find a Magnifier button in Program Editor or press
Ctrl+F. In the search window insert the name of an element you want to find or a part you remember. Press
'Find' button and results of search will appear in the new window. You may also pick some search options
like using case sensitivity, matching whole names or regular expression which can narrow your search.

Browsing for elements in project.

In Search Results window you may select element on the list to indicate an object in project. It is

https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdToRegion.html

possible to filter results with buttons on panel on the top of the window. Additionally if there are too
many results they can be filtered with keyword given in the box on top-right.

Managing search results.

RulesRules

Entering a search phrase also allows to pre-filter data with some keywords. When your project is large it
might be useful to use Rules in the search phrase. Here are some examples of using Rules in Search Window.

Further informationFurther information

For more details on the topic, please refer to the video tutorial on our YouTube channel:

NameName SyntaxSyntax ExampleExample ConstraintConstraint

Parent parent:<MacrofilterName> rectangle parent:Initialize Must have an instance in Macrofilter <MacrofilterName>.

Input in:<Name> load in:File
Must contain an input which either name or type contains

phrase <Name>.

Output out:<Name> load out:Integer
Must contain an output which either name, type or Data

Source Label contains phrase <Name>.

Connecting and Configuring FiltersConnecting and Configuring Filters

After a filter is added to the program it has to be configured. This consists in setting its inputs to
appropriate constant values in the Properties window or connecting them with outputs of other filters. It
is also possible to make an input linked with an external AVDATA file, connected with HMI elements or with
Global Parameters.

Connecting with Other FiltersConnecting with Other Filters

Filters receive data from other filters through connections. To create a connection, drag an output of a
filter to an input of a filter located below in the Program Editor (upward connections are not allowed).
When you drag an output - possible destinations will be highlighted. It is basic way to create program's
work-flow.

For convenience, new connections can also be created by forking existing connections (drag from the
vertical part of the existing connection):

Moreover, it is possible to reconnect an existing connection to another output or input port by dragging
the connection's head (near the destination port) or the connection's first horizontal segment (near the
source port).

Another way to create connections between filters is by using only the Properties window. When you click
the plug () icon in the right-most column, you get a list with possible connections for this input.

When the input is already connected the plug icon is solid and you can change the connection to another
one.

Setting Basic PropertiesSetting Basic Properties

Most of the filters have several parameters which you can set in the Properties window as shown on the
picture below. It is very important to go through these parameters is order to get desired results for
your specific application. To start, first select a filter in the Program Editor window.

Note: After clicking on the header of the properties table it is possible to choose additional columns.

Editing Geometrical PrimitivesEditing Geometrical Primitives

To edit geometrical data, such as line segments, circle, paths or regions, click the three dots button (
) in the Properties window at the input port you want to set or modify. A window similar to the one

below will appear. The first thing you will usually need to do, when you open this window for the first
time, is to select the background image from the list at the top of the window. This will set a context
for your geometric data.

https://docs.adaptive-vision.com/5.6/studio/hmi/HmiDesigner.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html#GlobalParameters

Editing of a path in a context of an image.

Tips:

Select a point and use its context menu to inspect or set the numeric coordinates.

Use the mouse wheel to zoom the view without changing the tool.

Hold 3rd mouse button and drag to move the view without changing the tool.

Hold Ctrl to limit the segment angles to the multitudes of 15 degrees.

Testing Parameters in Real TimeTesting Parameters in Real Time

One of the greatest features of Aurora Vision Studio is its orientation on rapid development of
algorithms. This encompasses the ability to instantly see how different values of parameters affect the
results. Due to the dynamic nature of this feature it cannot be presented in a static picture, so please
follow the instructions:

1. Create a simple program with a TestImage filter connected to a ThresholdImage filter.

2. Put the output of the ThresholdImage to a data preview.

3. Click Iterate Current Macro to execute the program to the last filter, but without ending it as

the whole (the execution state will be: Paused).

4. Select the ThresholdImage filter in the Program Editor and change its inMinValueinMinValue input in the
Properties window.

Now, you will be able to see in real time how changing the value affects the result.

Re-executing a filter after a change of a parameter.

Remarks:

Please note, that although being extremely useful, this is a "dirty" feature and may sometimes lead to
inconsistencies in the program state. In case of problems, stop the program and run it again.

This feature works only when the filter has already been executed and the program is Paused, but NOT
Stopped.

By default re-executed is the entire macrofilter. By unchecking the "Global Rerun Mode" setting the
re-execution can be limited to a single filter. This can be useful when there are long-lasting
computations in the current macrofilter.

It is not possible to re-execute i/o filters, loop accumulators or loop generators (because this would
lead to undesirable side effects). These filters are skipped when the entire macrofilter is getting
re-executed.

When re-executing a nested instance of another macrofilter, the previews of its internal data are NOT
updated.

Re-executing some filters, especially macrofilters, can take much time. Use the Stop command
(Shift+F5) to break it, when necessary.

If you set an improper value and cause a Domain Error, the program will stop and it will have to be
started again to use the re-execution feature.

The filter parameters can also be modified during continuous program execution (F5).

Linking or Loading Data From a FileLinking or Loading Data From a File

Sometimes data values that have to be used on an input of a filter are stored in an .avdata file, that has
been created as a result of some Aurora Vision Studio program (for example creating a custom OCR model).
It is possible to load such data to the program with the LoadObject filter, but most often it is more
convenient and more effective to link the input port directly to the file. To create such a link choose
Link from AVDATA File... from the context menu of the input (click with the right mouse button on an input
port of a filter).

https://docs.adaptive-vision.com/5.6/studio/filters/ImageBasics/TestImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/programming_tips/DomainErrors.html
https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/LoadObject.html

Input data linked from an AVDATA file.

It is also possible to load, not link, data from an .avdata file. This is done with the Import from AVDATA
File... command in the context menu, which copies the data and makes them part of the current project.

Connecting HMI and Global ParametersConnecting HMI and Global Parameters

It is also possible to connect filter inputs from outputs of HMI elements and from Global Parameters. Both
get displayed as rectangular labels at the sides of the Program Editor as can be seen on the image below:

A filter with connections from HMI and from a Global Parameter.

For further details please refer to the documentation on the specific topics:

HMI Designer

Global Parameters

Writable and Readable Global ParametersWritable and Readable Global Parameters

It is possible to read and write the value of global parameter by using ReadParameterReadParameter and
WriteParameterWriteParameter filters. This approach allows users to change global parameter values accordingly to their
needs at any point of an algorithm. A few practical applications of this feature are listed below:

Managing recipes depending on a signal from PLC,

Storing data transferred between nested macrofilters,

Setting global flags.

Labeling ConnectionsLabeling Connections

Connections are easier to follow than variables as long as there are not too many of them. When your
program becomes complicated, with many intersecting connections, its readability may become reduced. To
solve this problem Aurora Vision Studio provides a way to replace some connections with labels. You can
right-click on a connection, select "Label All Connections..." - when there is more than one connection or
"Label Connection..." when only one connection is present. Then set the name of a label that will be
displayed instead. The labels are similar to variables known from textual programming languages 3 they are
named and can be more easily followed if the connected filters are far away from each other. Here is an
example:

Remarks:

Labeled connections can be brought back (unlabeled) by using the "Un-label This Connection" or "Un-
label All Connections" commands available in the context menu of a label.

Please note, that when your program becomes complicated, the first thing you should consider is
reducing its complexity by refactoring the macrofilter hierarchy or rethinking the overall structure.
Labeling connections is only a way to visualize the program in a more convenient way and does not make
its structure any simpler. It is the user's responsibility to keep it well organized anyway.

Aurora Vision Studio enforces that all connections between filters are clearly visualized, even if
making them implicit would make programming easier in typical machine vision applications. This stems
from our design philosophy that assumes that: (1) it is wrong to hide something that the user has to
think about anyway, (2) the user should be able to understand all the details of a macrofilter looking
at a static screen image.

When the amount of connections becomes large despite good program structure you should also consider
creating User Structures that may be used for merging multiple connections into one. (Do NOT use
global parameters for that purpose).

A program with some long connections becomes not
easy to analyze.

Long connections are replaced with labels for
better readability.

https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html#GlobalParameters
https://docs.adaptive-vision.com/5.6/studio/hmi/HmiDesigner.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html#GlobalParameters

Invalid ConnectionsInvalid Connections

As types of ports in macrofilters and formulas may be changed after connections with other filters have
been created, sometimes an existing connection may become invalid. Such an invalid connection will be
marked with red line and white cross in the Program Editor:

Invalid connections do not allow to run the program. There are two ways to fix it: replace the invalid
connections or revise the types of the connected ports.

Property OutputsProperty Outputs

In addition to available filter's outputs, it is possible to get much more information out of a filter.
Many data types are represented as structures containing fields, e.g. Point2D consists of "X" and "Y"
fields of Real data type. Although these fields are not available as standard outputs, a user can easily
add them as additional filter outputs - we call them "Property Outputs". That way, they are directly
available for creating connections with inputs of other filters.

Accessing fields of Point2DArray type.

Additional Property OutputsAdditional Property Outputs

Some of the properties are calculated based on the current state of the output (for example, checking
whether the array is empty or counting its elements), whereas other are derived directly from the internal
structure of the type (for example, "X" and "Y" fields composing Point2D structure). The types providing
such properties are listed in the table below.

There are also special types, which cannot exist independently. They are used for wrapping outputs, which
may not be produced under some conditions (Conditional) or optional inputs (Optional), or else for keeping
a set of data of specified type (Array). Property outputs of such types are listed in the table below.

All of the above-mentioned property outputs are specific for the type. However, ports of Array, Optional
or Conditional type may have more property outputs, depending on the wrapped type. For example, if the
output of a filter is an array of regions, this port will have Count, IsArrayEmpty (both resulting from
the array form of the port), IsRegionEmpty and Area (both resulting from the type of the objects held in
the array - in this case, regions) as property outputs. However, if the output of a filter is an array of
objects without any property outputs (e.g. Integer), only outputs resulting from the array form of the
port (Count and IsArrayEmpty) will be available.

Tip: Avoid using basic filters like Not, ArraySize which will have bigger performance impact than
additional property outputs.

What Do What Do IsNilIsNil and and IsEmptyIsEmpty Mean: Mean:

These property outputs return a bool value depending on the content of the data. If the data is Nil, what
usually means that no object was detected, the property output IsNil is set to True otherwise it remains
False. The IsEmpty property has a similar use. The only difference is that it reacts if the inputted
object is Empty. In most common cases one use it for conditional execution of macrofilters or as an input
date to formulas. You can read how to deal with Nil and Empty objects in an article about conditional
execution

Expanded Input StructuresExpanded Input Structures

Analogously to expanding output properties, it is also possible to expand input structures. This works
only for basic structures which allow access to all their fields (e.g. Point2D, but not Image). Please
note, that the expanded input structure is replaced by the fields it consists of (unlike by adding
property outputs, where the structure itself remains available).

Structure nameStructure name Property outputsProperty outputs

Bool Not

ByteBuffer
Size

IsByteBufferEmpty

Histogram Size

Matrix IsMatrixEmpty

Path

Points
Size
Length

IsPathEmpty

Profile
Size

IsProfileEmpty

Region
Area

IsRegionEmpty

Segment2D
Length

Direction
Center

String
Length

IsStringEmpty

Vector2D
Length

Direction

Vector3D Length

Type nameType name Property outputsProperty outputs

Array
Count

IsArrayEmpty

ArrayArray (array of arrays)
Count

IsArrayEmpty
IsNestedArrayEmpty

Conditional IsNil

Optional IsNil

https://docs.adaptive-vision.com/5.6/studio/datatypes/Point2D.html
https://docs.adaptive-vision.com/5.6/studio/filters/Real/index.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Bool.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/ByteBuffer.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Histogram.html
https://docs.adaptive-vision.com/5.6/studio/filters/Matrix/index.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Path.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Profile.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Segment2D.html
https://docs.adaptive-vision.com/5.6/studio/filters/String/index.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Vector2D.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Vector3D.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Conditional.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Array.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Array.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Array.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Array.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Conditional.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Array.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Optional.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Conditional.html
https://docs.adaptive-vision.com/5.6/studio/filters/Integer/index.html
https://docs.adaptive-vision.com/5.6/studio/filters/Logic/Not.html
https://docs.adaptive-vision.com/5.6/studio/filters/ArrayBasics/ArraySize.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/ConditionalExecution.html

Expanding filter input of Rectangle2D?Array? type.

Result of expanding input of Rectangle2D?Array? type.

Comment BlocksComment Blocks

Comments are very important part of every computer program. They keep it clear and easy to understand
during development and further maintenance. There are two ways to make a comment in Aurora Vision Studio.
One way is to add a special comment block. Another option is adding a comment directly in the filter. To
add a new comment block to program click the right mouse button on the Program's Editor background and
select the "Add Comment Here" option like on the image below.

Adding a new comment.

Comment block can be very useful for describing the details of the algorithm.

Comments can be used for describing program steps.

But when you need just a simple tip or short remark, use a "Add Comment" after mouse right click on the
filter:

New comment directly in the filter.

Creating MacrofiltersCreating Macrofilters

IntroductionIntroduction

Macrofilters play an important role in developing bigger programs. They are subprograms providing a means
to isolate sequences of filters and re-use them in other places of the program. After creating a
macrofilter you can create its instances. From outside an instance looks like a regular filter, but by
double-clicking on it you navigate inside and you can see its internal structure.

When you create a new project, it contains exactly one macrofilter, named "Main". This is the top level
macrofilter from which the program execution will start. Further macrofilters can be added by extracting
them from existing filters or by creating them in the Project Explorer window.

Extracting Macrofilters (The Quick Way)Extracting Macrofilters (The Quick Way)

The most straightforward way of creating a macrofilter is by extracting it from several filters contained
in an existing macrofilter. This is done by selecting several filters in the Program Editor and choosing
the Extract Step... command from the context menu, as depicted in the picture below:

Extracting a macrofilter from three existing filters.

After completing this operation, a new macrofilter definition is created and the previously selected
filters are replaced with an instance of this macrofilter. Now, additional inputs and outputs of the new
macrofilter can be created by dragging and dropping connections over the new macrofilter instance.

Remark:Remark: The "Extract Task (loop)..." command creates a new Task macrofilter which should be used only in
special cases. Execution of the Task macrofilter is more complex than execution of the Step macrofilter.
Usage of the Task macrofilter for reducing macrofilter complexity may be inappropriate. For more details
please read section about Task macrofilters.

Defining the InterfaceDefining the Interface

Being inside of a macrofilter other than "Main" you can see two special blocks: the Macrofilter Inputs and
the Macrofilter Outputs. The context menus of these blocks allow to add new inputs or outputs. Another
method of adding them is by dragging connections and dropping them over these blocks.

Before the new port is created you need to provide at least its name and type:

Defining a port of a macrofilter.

NOTE: Names of macrofilter inputs and outputs should be clear and meaningful. Names of inputs always start
with "in", while names of outputs always start with "out".

Adding RegistersAdding Registers

The context menus of macrofilter input and output blocks also contain a command for adding macrofilter
registers, Add Macrofilter Register.... This is an advanced feature.

Adding a new output using the context menu of the
Macrofilter Outputs block.

Adding a new output by dragging and dropping a
connection.

https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Registers

Creating Macrofilters in the Project ExplorerCreating Macrofilters in the Project Explorer

All macrofilter definitions that are contained in the current project can be displayed in the Project
Explorer window (by default it is behind the Toolbox on a tab page). Using this control, the user can
create or edit macrofilters, but it also acts as a filter catalog from which instances can be created by
dragging and dropping the items into the Program Editor.

To create a new macrofilter in the Project Explorer click the Create New Macrofilter... button. A new

window will appear allowing you to select the name and structure of the new macrofilter.

Please note, that due to their special use Worker Tasks can only be created in the Project Explorer. For
more information on Worker Tasks please refer to Macrofilters article.

Copying MacrofiltersCopying Macrofilters

When copying macrofilters in the Program Editor window, you can only create their new instances: modifying
one instance will inevitably affect all the others. In order to duplicate the definitions (create brand-
new copies) of old macrofilters as independent entities that you will be able to modify separately, you
need to do it inside the Project Explorer window.

Copying macrofilters in the Project Explorer - creating new definitions.

Copying macrofilters in the Program Editor - creating new instances.

Please keep in mind, that regardless of whether you copy macrofilters in the Program Editor or the Project
Explorer, with other macrofilters nested inside, no new definitions of nested macrofilters will be
created.

1. When copying the parent macrofilter (first nest level) in the Program Editor, the number of instances
of nested (child) macrofilters will not change.

2. When copying the parent macrofilter (first nest level) in the Project Explorer, new instances of nested
(child) macrofilters will be created.

If you want to create a new copy of the whole macrofilter tree (copy of all definitions) you will have to
copy each macrofilter separately, starting with the most nested one.

The StartUp ProgramThe StartUp Program

It is sometimes useful to have several programs in a single project. The most common scenarios are:

When some more complex data, e.g. custom OCR models or calibrated reference images, need to be
prepared in a separate program.

When it is convenient to have multiple versions of a single program customized for different
installations.

When the highest reliability is important and sets of automated tests need to be performed on recorded
images.

In Aurora Vision Studio a program can be any Worker Task macrofilter. The list of all macrofilters
fulfilling this criterion can be seen in the StartUp Macrofilter combo box on the Application Toolbar.
This control makes it possible to choose the program that will be run. The related macrofilter will be
displayed in the Project Explorer with the bold font.

The StartUp Program Combo Box.

Macrofilter GuidelinesMacrofilter Guidelines

Macrofilters organize big projects, but it is responsibility of the user to make this organization clean
and effective. When a project grows, especially under the pressure of time, it is easy to forget this and
create programs that are difficult to understand and maintain. To avoid this, please follow the following
guidelines:

Adding Macrofilters in the Project
Explorer.

Selecting the name and the structure of a new
macrofilter.

https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Structures
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Workers
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Workers

1. Macrofilters should not be too big. For program clarity they should typically consist of 3-15 filters.
If you macrofilters have more than 20, it is certainly going to be cause trouble.

2. Each macrofilter should have a clear and single function well reflected in its name. It is recommended
to create macrofilters as tools that could possibly be used in many different projects.

3. Macrofilter names do not affect the program execution, but they are very important for effective
maintenance. Choose precise and unambiguous English names. Follow the verb + noun naming convention
whenever possible and avoid abbreviations (this applies also to names of macrofilter ports).

4. Do not mix data analysis with things like communication or visualization in a single macrofilter.
These should be separated. If data visualization is needed for HMI, compute results in one macrofilter
and then prepare the visualization in another. This will make the data flow more clear.

5. During project development it is very common that the initial program structure becomes inappropriate
for what has been added during development, or that it becomes too complicated and unclear. This is
when you should consider REFACTORING, i.e. redesigning the program structure, boundaries of
macrofilters and revising any complicated sequences of filters. We strongly recommend considering
refactoring as a routine part of the job.

Creating Models for Template MatchingCreating Models for Template Matching

IntroductionIntroduction

Template Matching tools are very often used as one of the first steps in industrial inspection
applications. The goal is to detect the location of an object. Before this can be done the user has to
create a model representing the expected object's shape or structure. To make this step straightforward,
Aurora Vision Studio provides an easy user interface. We call it a "GUI for Template Matching".

The GUI for Template Matching is an editor for values of two types: EdgeModel and GrayModel. This means
that to open it the user has to select a template matching filter in the program and then click on the

button at the inGrayModelinGrayModel or inEdgeModelinEdgeModel input in the Properties window:

Opening GUI for Template Matching.

In majority of industrial applications Template Matching algorithms implemented in Aurora Vision Studio
easily detect the location of an object using default parameters. However, there are cases where it is
needed to tune some of them, mainly in order to achieve higher reliability. It turned out that there is a
group of parameters, which is used more often than others. Therefore GUI for Template Matching is
available in two variants: Basic and Expert. This is related to Complexity Levels available in Aurora
Vision Studio.

Creating a ModelCreating a Model

BasicBasic

The Basic window contains the following elements:

1. At the top: a list of possible template images

2. Below: a simple toolbar that also contains a button for loading a template image from a file

3. On the left: a tool for selecting a rectangular template region

4. On the right: track-bars for setting parameters and some options related to the view

5. In the center: an area for selecting the template region in the context of the selected template image

Basic GUI for Template Matching window

To create a template matching model you need to:

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/EdgeModel.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/GrayModel.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/UserProficiencyLevel.html

1. Choose a template image from the "Reference image" list.

2. Select a rectangular template region using drawing tool. For maximum performance this rectangle

should be as small as possible.

3. Edge-based matching only: Set the Edge ThresholdEdge Threshold parameter, which should be set to value that
results in the best quality of the edges. Edge ThresholdEdge Threshold determines the minimum strength (gradient's
magnitude) of pixels that can be considered as an edge.

Low quality edges (Edge Threshold = 8) and high quality edges (Edge Threshold = 30)

4. Set the Rotation ToleranceRotation Tolerance in range from 0° to 360°. This parameter determines the maximum expected
object rotations. Please note that the smaller the Rotation Rotation ToleranceTolerance, the faster the matching.

5. Set the Minimal Pyramid LevelMinimal Pyramid Level parameter which determines the lowest pyramid level used to validate
candidates who were found on the higher levels. What is worth mentioning is that setting this
parameter to a value greater than 0 may speed up the computation significantly, however, the accuracy
of the matching can be reduced. More detailed information about Image Pyramid is provided in Template
Matching document in our Machine Vision Guide.

ExpertExpert

The Expert window contains the following elements:

1. At the top: a list of possible template images

2. Below: a simple toolbar that also contains a button for loading a template image from a file

3. On the left: a tool for selecting a template region of any shape

4. On the right: parameters of the model, their description and some options related to the view

5. In the center: an area for selecting the template region in the context of the selected template image

GUI for Template Matching window

To create a template matching model you need to:

1. Choose a template image from the "Reference image" list.

2. Mark a template region using drawing tools (please note, that the button above the tools switches the
current color, i.e. you can both draw or erase shapes). For maximum performance this region should be
as small as possible.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/index.html

3. Edge-base matching only: Set the inSmoothingStdDevinSmoothingStdDev, inEdgeMagnitudeThresholdinEdgeMagnitudeThreshold and
inEdgeHysteresisinEdgeHysteresis parameters to values that result in the best quality of the found edges. It is
advisable to first set inEdgeHysteresisinEdgeHysteresis to zero, then choose a value for inEdgeMagnitudeThresholdinEdgeMagnitudeThreshold
that assures that all edges have some parts detected and then increase inEdgeHysteresisinEdgeHysteresis. Small noise
might by removed by change the value of parameter inSmoothingStdDevinSmoothingStdDev. For example:

Low quality edges

High quality edges

4. Set the inMinAngleinMinAngle and inMaxAngleinMaxAngle parameters accordingly to the expected range of object rotations
(the smaller the range, the faster the matching).

5. Set the inAnglePrecisioninAnglePrecision to a value lower that 1.0 if you prefer to lower the angular precision for
the benefit of speed.

6. Set the inMinScaleinMinScale, inMaxScaleinMaxScale and inScalePrecisioninScalePrecision to appropriate value if you need to detect
objects in different scale. You should be aware of longer detection time when you detect objects in
scale.

7. Click the "Refresh" button or check "Update preview after each modification" to review the results.

8. Click the "Next >" button to select template rectangle that represents the entire object of interest
(the expected result of matching)

Template rectangle selection

9. Click "OK" to close the window and generate the model.

Performing Template MatchingPerforming Template Matching

When the model is ready, performing template matching in an application is straightforward 3 after
connecting the filters and setting the matching parameters, the results are on the outputs of the
LocateSingleObject_Edges1 filter (or similar):

https://docs.adaptive-vision.com/5.6/studio/filters/TemplateMatching/LocateSingleObject_Edges1.html

Example result of template matching

See also:See also:

Template Matching guide, Template Matching filters

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/studio/filters/TemplateMatching/index.html

Preparing Rectification Transform MapPreparing Rectification Transform Map

OverviewOverview

Before you read this article, make sure you are acquainted with Camera Calibration and World Coordinates.

If you want to perform camera calibration in Aurora Vision Studio, there two basic ways to do that. You
can either use a calibration editor (plugin) or use filters (manual configuring parameters and connecting
outputs with corresponding inputs). Both approaches provide you with the very same results, but the latter
way allows you to control intermediate steps and outputs if they are relevant to you for some reason.

This guide will focus mainly on the first approach and show how to perform calibration with the editor
step by step. To perform image rectification, the RectifyImage filter should be applied. When you click on
the inRectificationMapinRectificationMap input, the Calibration Editor will be displayed:

The overview of the Calibration Editor.

As you can see the editor consists of three pages:

1. Camera CalibrationCamera Calibration - in which camera lens parameters are computed.

2. World to Image TransformWorld to Image Transform - in which perspective and transform converting real-world points to image
points are computed.

3. Rectification Map GeneratorRectification Map Generator - in which fast pixel transform is computed to get a rectified image.

Each of the pages will be individually described, but as it has been already noted, each of the pages in
the Calibration Editor invokes corresponding calibration filters. The general overview is in the table
below:

Camera Calibration PageCamera Calibration Page

On the first page of the Calibration Editor you have to provide images of calibration boards, using the
buttons marked in red.

The purpose of this stage is to estimate intrinsic camera parameters. They do not depend on the
transformation between the camera and its external world, therefore this step can be done before mounting
the camera at the target place.

Page name Corresponding filters

Camera Calibration
CalibrateCamera_Pinhole

CalibrateCamera_Telecentric

World to Image Transform

CalibrateWorldPlane_Default

CalibrateWorldPlane_Labeled

CalibrateWorldPlane_Manual

CalibrateWorldPlane_Multigrid

Rectification Map Generation

CreateRectificationMap_Advanced

CreateRectificationMap_PixelUnits

CreateRectificationMap_WorldUnits

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/CameraCalibrationAndWorldCoordinates.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateWorldPlane_Default.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateWorldPlane_Labeled.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateWorldPlane_Manual.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CalibrateWorldPlane_Multigrid.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CreateRectificationMap_Advanced.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CreateRectificationMap_PixelUnits.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/CreateRectificationMap_WorldUnits.html

Camera Calibration Page - adding images.

Next, you need to specify board and camera parameters. There are two possible options to choose from,
depending on what kind of pattern is used:

ChessboardChessboard - where you have to define two parameters of the board: width and height, which correspond
to the number of squares in horizontal and vertical directions, respectively.

CirclesCircles - where you have to define a single circle's radius and threshold value.

Once they are set, you should adjust camera type according to an applied camera, which can be either
pinholepinhole (which uses a standard perspective projection) or telecentrictelecentric (uses an orthographic projection).

A few distortion model types are supported. The simplest - divisional - supports most use cases and has
predictable behavior even when calibration data is sparse. Higher order models can be more accurate,
however, they need a much larger dataset of high quality calibration points, and are usually needed for
achieving high levels of positional accuracy across the whole image - order of magnitude below 0.1 px. Of
course this is only a rule of thumb, as each lens is different and there are exceptions.

Results & Statistics tab informs you about results of the calibration, especially about reprojection
error, which corresponds with reprojection vectors shown in red on the preview in the picture below:

If you are using chessboard
pattern, you have to count squares

in both dimensions.
In this example, the width is 10

and the height is 7.

If you are using circle pattern, you have to measure radius of any
circle.

In this example, it is about 10px. Note: it is important to use a
symmetric board as shown in the image. Asymmetric boards are

currently not supported.

They indicate the direction towards each located point should be moved in order to deliver an immaculate
grid. Additionally, there are values of Root Mean Square and Maximal error. The tab also displays value
and standard deviation for each computed camera and lens distortion parameter.

For more details, please refer to the corresponding group of filters for this page in the table above.

World to Image Transform PageWorld to Image Transform Page

Points added to the second page are used to find transformation between real-world and image points.

World to Image Transform - overview.

First of all, in this step, you need to add images of the calibration board as well (using the very same
buttons as in the previous step). Please note that in this step they have to be taken from a fixed angle
in contrast to the previous step, where all of images could be taken from different angles.

In the next step you should indicate points source in either of two ways:

By entering points manuallyentering points manually

By using calibration gridcalibration grid

Points can be found automatically using the calibration board as in the previous step.

After successful points location on the calibration board, you should use the spreadsheet to manually
enter coordinates in world plane:

World to Image Transform - modifying points in the spreadsheet.

Points with unspecified world coordinates will have them calculated automatically based on points with
specified coordinates. If there are no world coordinates entered, then algorithm will assume some default
world point locations, what might produce false results. At least two grid point world coordinates are
needed to uniquely determine the world plane position, rotation and spacing.

World to Image Transform - automatic grid spacing assumed.

Arrows indicate which points from the calibration grid relate to corresponding rows in the spreadsheet. As
you can see each row consists of coordinates in the image plane (given in pixelspixels), coordinates in the
world plane (given in mmmm), and error (in pixelspixels), which means how much a point is deviated from its model
location. In this case reprojection vectors, which are marked as small, red arrows, also indicate the
deviation from the model.

Colors of points have their own meaning:

Green Point - the point has been computed automatically.

Orange Point - the point which has been selected.

Blue Point - the point has been adjusted manually.

The Results & Statistics tab shows information about computed errors for both image and world coordinates.
The output reprojection errors are useful tool for assessing the feasibility of computed solution. There
are two errors in the plugin: Image (RMS) and World (RMS). The first one denotes how inaccurate the
evaluation of perspective is. The latter reflects inaccuracy of labeling of grid 2D world coordinate
system. They are independent, however they both influence quality of the solution, so their values should
remain low.

For the details, please refer to the corresponding group of filters for this page in the table above.

Rectification Map Generator PageRectification Map Generator Page

Last page is used to set parameters of an image after the rectification.

First of all, you need to load images of the calibration board in the same way as in previous steps.

World to Image Transform - grid spacing calculated from world point coordinates given by the user.

Rectification Map Generation - rectifying the image.

Next, you have to choose one of three basic options of the output image:

Default image settingsDefault image settings

Custom image parametersCustom image parameters

World bounding boxWorld bounding box

The green frame on the preview informs you about the size and borders of the output image, and depending
on what option you have chosen, you can set different parameters. Using custom parameters or world
bounding box will provide you with the same rectification map, but what makes the difference is that you
are working in different domains - in the first case you are operating in the image coordinates (given in
pixels), whereas in the other one you are operating in the world coordinates (given in millimeters).

When you are done, you can click on the Generate Rectification MapGenerate Rectification Map button and assess the rectified
image displayed on the preview.

For the details, please refer to the corresponding group of filters for this page in the table above.

Relation between the Calibration Editor and filtersRelation between the Calibration Editor and filters

The relation between both approaches could be presented in a form of the below graphics:

The left side presents which filters are necessary to generate a rectification map and how to save it
using SaveObject. The right side presents how to load the rectification map using LoadObject and passing

it to the RectifyImage filter.

This is just an exemplary set of filters which might be applied, but using specific filters depend on the
calibration board and other parameters relevant to a case.

Further readingsFurther readings

https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/SaveObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/LoadObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/RectifyImage.html

Calibration-related list of filters in Aurora Vision Studio

https://docs.adaptive-vision.com/5.6/studio/filters/CameraCalibration/index.html

Creating Text Segmentation ModelsCreating Text Segmentation Models

Please be informed that this article is related to the traditional OCR method. Nowadays, wePlease be informed that this article is related to the traditional OCR method. Nowadays, we
strongly recommend using Deep Learning OCR tools, which are much faster and more efficient thanstrongly recommend using Deep Learning OCR tools, which are much faster and more efficient than
the traditional ones in many cases. the traditional ones in many cases. You can find more information about the Deep Learning toolsYou can find more information about the Deep Learning tools
herehere..

The graphical editor for text segmentation performs two operations:

1. ThresholdingThresholding an image with one of several different methods to get a single foreground region
corresponding to all characters.

2. SplittingSplitting the foreground region into an array of regions corresponding to individual characters.

Details about using OCR filters can be found in Machine Vision Guide: Optical Character Recognition -
traditional method.

To configure text extraction please perform the following steps:

1. Add an ExtractText filter to the program.

2. Set the region of interest on the inRoi input. This step is necessary before performing next steps.
The image below shows how the ROI was selected in an example application:

3. Click on the "..." button at the inSegmentationModelinSegmentationModel input to enter the graphical editor.

4. When entering first time, complete the quick setup by selecting most common settings. In this example
a black non-continuous text should be extracted from a uniform background. Configuration was set to
meet these requirements.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#read_characters
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/OpticalCharacterRecognition.html
https://docs.adaptive-vision.com/5.6/studio/filters/OpticalCharacterRecognition/ExtractText.html

5. After the quick setup the graphical editor starts with some parameter set. Adjust the pre-configured
parameters to get best results.

6. Configure a character extraction algorithm. In this case thresholding value is too high and must be
reduced.

7. Select a character segmentation algorithm.

8. Set the minimal and the maximal size of a character. The editor shows the character dimensions when
the character is selected in the list below.

9. Select a character sorting order, character deskewing (shearing) and image dilation.

10. Check results using available images.

Creating Golden Template ModelsCreating Golden Template Models

Golden template technique is the most powerful method for finding objects' defects. Editor presented below
is available in filters CompareGoldenTemplate_Intensity and in CompareGoldenTemplate_Edges.

To create golden template, select template region and configure its parameters.

Remarks:Remarks:

To reduce computation time try to select only necessary part of an object,

For comparing both edges and surface use two CompareGoldenTemplate filters,

To create mode programmatically use filter CreateGoldenTemplate.

https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CompareGoldenTemplate_Intensity.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CompareGoldenTemplate_Edges.html
https://docs.adaptive-vision.com/5.6/studio/filter_groups/CompareGoldenTemplate.html
https://docs.adaptive-vision.com/5.6/studio/filter_groups/CreateGoldenTemplate.html

Creating Models for Golden TemplateCreating Models for Golden Template

IntroductionIntroduction

Golden Template is an image comparison technique. It is based on the pixel-to-pixel comparison but uses
multiple images and advanced algorithms to create a multi-image model. It is useful for finding general
defects of objects that have fixed shape. In order to simplify the process of model creation a "GUI for
Golden Template 2" was created. It is possible to access it by clicking on the button at the inModel

input in the Properties window:

Opening GUI for Golden Template 2

Image PreparationImage Preparation

To create a golden template model you need at least three same-sized images representing the same object.
The object should be placed in the same way in all the images. Otherwise, the final model may not be
accurate enough.

The first step is to prepare the images. To be sure that the object is always precisely positioned and
have the same size - in both the model and the program - you can use the sequence of filters presented
below:

Image preparation process

Following steps were performed there:

LocateSingleObject_Edges1 filter was used to create a robust model able to locate the logo and
remember its alignment

AdjustPathArrayToEdges allows you to improve the template matching results

CropImageToRectangle gives evenly-cut images of the object. You should specify the inRectangleinRectangle input
manually.

If you have at least three images prepared, you can proceed to the next stage.

Model CreationModel Creation

Add CreateGoldenTemplate2 filter to the program and click inModelinModel in the properties window, as shown in
the image at the beginning of the article. After that the following window will appear:

Golden Template Editor

Firstly, add images to the editor. It is possible to either use the drag and drop function or load images

from the directory by clicking on the icon. The images will be used to create the Golden Template

model, so they should present samples without defects.

After loading all the images, draw a mask that represents the object of interest on one image. It applies
to all the other images that you loaded. That is why it was necessary to properly position the objects in
the images. If no mask is detected the warning will appear. If the object covers most of the field of
view, please feel free to mark the whole image.

Now you can check the preview with the "Show average of all images" and adjust the training parameters:

DownscaleDownscale - resizing the image dividing by the value. It greatly speeds up the computing in exchange
for the ability to spot pixel-size defects

MaximalDisplacementMaximalDisplacement - possible error in object positioning, high values may impair detection of
small defects, especially near edges

LargeDefectSizeLargeDefectSize - expected diameter of largest, extensive defects

BrightnessAugmentationBrightnessAugmentation - allows for additional brightness deviation

NoiseAugmentationNoiseAugmentation - allows for additional noise presence in the images

SmoothingAugmentationSmoothingAugmentation - allows for additional smoothing in the images, uses gaussian smoothing with
specified standard deviation

Clicking OK button will start the training. The editor will close itself afterwards.

The model is created and loaded in the CreateGoldenTemplate2 filter. If you prepare the inspection images
in the same way as during model creation (by positioning and cropping them) everything should work
properly.

https://docs.adaptive-vision.com/5.6/studio/filters/TemplateMatching/LocateSingleObject_Edges1.html
https://docs.adaptive-vision.com/5.6/studio/filters/ShapeAdjustment/AdjustPathArrayToEdges.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageAnalysis/CreateGoldenTemplate2.html

Creating Text Recognition ModelsCreating Text Recognition Models

Please be informed that this article is related to the traditional OCR method. Nowadays, wePlease be informed that this article is related to the traditional OCR method. Nowadays, we
strongly recommend using Deep Learning OCR tools, which are much faster and more efficient thanstrongly recommend using Deep Learning OCR tools, which are much faster and more efficient than
the traditional ones in many cases. the traditional ones in many cases. You can find more information about the Deep Learning toolsYou can find more information about the Deep Learning tools
herehere..

Text recognition editor creates an OCR model for getting text from regions. More details about the
traditional OCR technique can be found in Machine Vision Guide: Optical Character Recognition.

To create an OCR model a set of characters should be collected. If recognition score is low after training
based on real samples then artificial character variations can created.

Creation of a model consists of following steps:

1. Collecting real samplesCollecting real samples - after opening the editor characters are visible and can be added to a
training set.

After the training character samples can be viewed in the details tab:

2. Creating artificial samplesCreating artificial samples - when no samples are available user can create a training set using
systems fonts.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#read_characters
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/OpticalCharacterRecognition.html

3. Creating character variationsCreating character variations in case when no more samples are available and the training result is
not fine the editor can modify existing samples to create a new set.

The training set after adding new samples variations:

4. Editing samplesEditing samples - in case when gathered samples contain noises, or its quality is low, user can edit
them manually. The image below show how to edit a character '8' to get character '9'.

Note:Note:

Each training character should have this same number of samples.

In cases when some characters are very similar number of samples can be increased to improve
classification.

Character samples can be stored in an external directory to perform experiments on them.

Auto-tuning Datacode ParametersAuto-tuning Datacode Parameters

IntroductionIntroduction

Auto-tune Editor can assist you in determining the optimal parameters for the ReadDataCodes filter. By
using one or more provided images, it attempts to read as many codes as possible by testing different
parameter combinations. It also optimizes the reading score and execution time.

To open the Editor, double-click on the ReadDataCodes filter or click on Auto-tune...Auto-tune... in the Properties
panel. Note that inputs to be modified by Auto-tune cannot be connected.

Opening Auto-tune Editor

Basic OperationBasic Operation

Auto-tune Editor overview

Parameters for datacode reading from the inputs inDetectorParamsinDetectorParams, inMatrixCodeParamsinMatrixCodeParams and
inLinearCodeParamsinLinearCodeParams are loaded into the editor and can be seen on the right side. Additionally, the
inMatrixSymbologiesinMatrixSymbologies and inLinearSymbologiesinLinearSymbologies input values are also loaded.

First, select an image from the program to be used (you may need to run the program first). After
selecting an image, the editor tries to read the codes on the image using the current parameters. Codes
that can be read are highlighted on the image.

After pressing the Auto-tuneAuto-tune button, the optimization process begins. The algorithm initially attempts to
read as many codes as possible (at least the minimum defined number). Then, the parameters are refined to
improve the scores of the read codes until at least the minimum defined score is achieved. Finally, the
parameters are optimized to achieve the smallest possible execution time while still reading the required
number of codes and maintaining an acceptable score.

During optimization, the current best parameters are updated live and displayed on the right. Read codes
are displayed on the image. The progress of optimization regarding score and execution time can be seen on
the charts.

If the results are satisfactory, the user can accept them by clicking OKOK. The optimized parameters are
then written to the filter inputs.

If something goes wrong during optimization, you can start from scratch by clicking the ResetReset button. The
results are then cleared, and the parameters are returned to their default values.

Conservative OptimizationConservative Optimization

If the user clicks the Extend onlyExtend only button instead of Auto-tuneAuto-tune, optimization is performed in
conservative mode. This mode is designed to make modifications to the reading parameters that will not
prevent the filter from reading codes that were previously readable. For example, the parameter
MaxRowCountMaxRowCount in regular auto-tune can be increased or decreased, but in conservative mode, it can only be
increased.

This mode is intended for tweaking parameters that already work in most cases. For example, it can help
read a new difficult code while continuing to read existing codes.

Single and Multiple Codes ModeSingle and Multiple Codes Mode

By default, the editor starts in single codesingle code mode, meaning it can read only one code per image. To read
more codes, change the variant of the ReadDataCodes filter to MultipleMultiple and reopen the editor.

Note that in multiple codesmultiple codes mode, additional filter inputs are loaded into the editor (and written back
when closing the editor). The input inMaxCodeCountinMaxCodeCount determines how many codes can be present in one image
at most. The input inAllowMultipleScalesinAllowMultipleScales can be useful when there are codes of different sizes in one
image.

Single and Multiple Images ModeSingle and Multiple Images Mode

Similarly, the editor begins in single imagesingle image mode. For simplicity, the user can select a single image
from those used in the current program. To assist auto-tune in choosing better parameters, the user can
switch to multiple imagesmultiple images mode to provide more images. Use the menu in the top-right corner to switch.

Switching to multiple images mode

Before starting auto-tune you will need to load the images into the list on the left. All of them will be
considered during optimization process.

Editor in multiple images mode

Multiple codesMultiple codes mode and multiple imagesmultiple images mode can be used at the same time.

Auto-tune ParametersAuto-tune Parameters

Auto-tune requires some parameters to be set manually:

Minimum scoreMinimum score: The algorithm will attempt to improve the score up to this value, and during
execution time optimization, it will not allow the score to fall below this value.

Detection methodDetection method: If set to a value other than Auto, the DetectionMethod parameter will consistently
be set to this value. This can be used to prevent auto-tune from altering it.

Time budgetTime budget: Specifies the time to spend on optimization (in seconds). Alternatively, you can set a
large value and then click StopStop to manually finish auto-tune.

Minimal number of codes to be read in all imagesMinimal number of codes to be read in all images: The algorithm will initially attempt to use
parameters that allow reading at least this many codes in all images combined. Setting this value too
high may cause optimization failure. Conversely, setting it lower than the actual number of codes may
result in not all codes being read, but the score and execution time may improve.

*Maximal number of codes in one image*Maximal number of codes in one image: If set too low, the code reader may stop reading before
finding all codes in one image, potentially preventing auto-tune from achieving the minimum required
number of codes across all images.

*Allow multiple scales*Allow multiple scales: If set to false, the code reader may fail to read two codes when their
sizes differ significantly.

Read codes after parameters or image changedRead codes after parameters or image changed: After a relevant code reading parameter is changed,
the editor will read codes again on the current image so the user can observe the effect. However, if
the codes are difficult and reading takes too much time, you can disable this for a better user
experience.

https://docs.adaptive-vision.com/5.6/studio/filter_groups/ReadDataCodes.html
https://docs.adaptive-vision.com/5.6/studio/filter_groups/ReadDataCodes.html
https://docs.adaptive-vision.com/5.6/studio/filter_groups/ReadDataCodes.html

*Types of code*Types of code: Limits which types of codes are read. If a code type is unchecked here, it willIf a code type is unchecked here, it will
never be read.never be read.

Parameters marked with * are linked to filter inputs (they are loaded when opening the editor and written
back when accepting changes). They are also passed to the code reader inside auto-tune (which is
essentially another ReadDataCodes filter).

https://docs.adaptive-vision.com/5.6/studio/filter_groups/ReadDataCodes.html

Analysing Filter PerformanceAnalysing Filter Performance

The Program Statistics window contains information about the time profile of the selected macrofilter.
This is very important as real vision algorithms need to be very fast. However, before starting program
optimization we must know what needs to be optimized, so that later we optimize the right thing. Here is
how the required information is presented:

As can be seen on the above illustration, program execution time is affected by several different factors.
The most important is the "Native Filters" time, which corresponds to the core data processing tools.
Additional time is consumed by "Data Transfers", which is related to everything that happens on
connections between filters 3 this encompasses automatic conversions as well as packing and unpacking
arrays on array and singleton connections. Another statistic called "Other" is related to the virtual
machine that executes the program. If it value is significant, then C++ code generation might be worth
considering. The last element, "GUI", corresponds to visualization of data and program execution progress.
You can expect that this part is related only to the development environment and can possibly be reduced
down to zero in the runtime environment.

Remarks:

In practice, performance statistics may vary significantly in consecutive program executions. It is
advisable to run the program several times and check if the statistics are coherent. It might also be
useful to add the EnumerateIntegers filter to your program to force a loop and collect performance
statistics not from one, but from many program iterations.

Turn off the diagnostic mode when testing performance.

Data Preview Panels, animations in the Program Editor and even the Console Window can affect
performance in Aurora Vision Studio. Choose Program » Previews Update Mode » Disable Visualization to
test performance with minimal influence of the graphical environment. (Do not be surprised however
that nothing is visible then).

Even with all windows closed there are some background threads that affect performance. Performance
may still be higher when you run the program with the Executor (runtime) application.

Please note that the first program iteration might be slower. This is due to the fact that in the
first iteration memory buffers are allocated, filters are initialized, communication with external
devices is established etc.

See also: Optimizing Image Analysis for Speed.

https://docs.adaptive-vision.com/5.6/studio/programming_tips/OptimizingImageAnalysis.html
https://docs.adaptive-vision.com/5.6/studio/technical_issues/CppCodeGenerator.html
https://docs.adaptive-vision.com/5.6/studio/filters/LoopGenerators/EnumerateIntegers.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/DiagnosticMode.html
https://docs.adaptive-vision.com/5.6/studio/programming_tips/OptimizingImageAnalysis.html

Seeing More in the Diagnostic ModeSeeing More in the Diagnostic Mode

Programs can be executed in two different modes: Diagnostic and Non-Diagnostic. The difference between
them is in the computation of values on the diagnostic outputs. Values of this kind of outputs are
computed only in the Diagnostic mode. They can be helpful in debugging programs but are not necessary in
its final version. In the Non-Diagnostic mode, execution is faster because no diagnostic values are
computed.

The Diagnostic Mode switch.

The execution mode can be easily changed in Aurora Vision Studio using a button on the Application
Toolbar. Outside of Aurora Vision Studio, programs are always executed in the Non-Diagnostic mode to
provide the highest performance.

Diagnostic Filter InstancesDiagnostic Filter Instances

Filters that have inputs connected to diagnostic outputs of some filters above them, are said to be
diagnostic too. They are executed only when the program runs in the Diagnostic mode.

ExampleExample

The ScanSingleEdge filter has three diagnostic outputs:

diagBrightnessProfilediagBrightnessProfile is the profile of image brightness sampled along the scan path.

diagResponseProfilediagResponseProfile is the profile derivative after preprocessing.

diagSamplingPointsdiagSamplingPoints visualizes the points on the input image from where the brightness samples were
taken.

The ScanSingleEdge filter.

Input image with the scan path and
the diagnostic sampling points.

The brightness profile. The response profile.

https://docs.adaptive-vision.com/5.6/studio/filters/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/studio/filters/1DEdgeDetection/ScanSingleEdge.html

Deploying Programs with the Runtime ApplicationDeploying Programs with the Runtime Application

IntroductionIntroduction

Aurora Vision Executor is a lightweight application that can run programs created with Aurora Vision
Studio. The GUI controls that appear in this application are the ones that have been created with the HMI
Designer. The end user can manipulate the controls to adjust parameters and can see the results, but he is
not able change the project.

Aurora Vision Executor application is installed with the Aurora Vision Studio Runtime package. It can be
used on computers without the full development license. Only a runtime license is required. What is more,
programs executed in Aurora Vision Executor usually run significantly faster, because there is no overhead
of the advanced program control and visualization features of the graphical environment of Aurora Vision
Studio.

The screen of Aurora Vision Executor.

UsageUsage

Open a project from a file and use standard buttons to control the program execution. A file can also be
started using the Windows Explorer context menu command Run, which is default for computers with Aurora
Vision Studio Runtime and no Aurora Vision Studio installed.

Please note, that Aurora Vision Executor can only run projects created in exactly the same version of
Aurora Vision Studio. This limitation is introduced on purpose 3 little changes between versions of Studio
may affect program compatibility. After any upgrade your application should first be loaded and re-saved
with Aurora Vision Studio as it then runs some backward compatibility checks and adjustments that are not
available in Executor.

Console modeConsole mode

It is possible to run Aurora Vision Executor in the console mode. To do so, the --console argument is
needed to be passed. Note, that this mode makes the --program argument required so the application will
know which program to run at startup.

Aurora Vision Executor is able to open a named pipe where it's log will be write into. This is possible
with --log-pipe argument which accepts a pipe name to be opened. One may then connect to the pipe and
process Aurora Vision Executor log live. This can be easily done e.g. in C#:

 var logPipe = new NamedPipeClientStream(".", "myProjectPipe", PipeDirection.In);

 logPipe.Connect();

 byte[] buffer = new byte[1024];

 int count = 0;

 while (logPipe.IsConnected && (count = logPipe.Read(buffer, 0, 1024)) > 0)

 {

 Console.WriteLine(Encoding.UTF8.GetString(buffer, 0, count));

 }

Available Aurora Vision Executor arguments are as follows:

--program
Path to the program to be loaded

--log-level
Sets the logged information level

--console
Runs the application in the console mode

--auto-close
Automatically closes the application when program is finished. Meaningful only in console mode.

--language
Specifies the language code to use as the user interface language.

--attach
Attaches application process to the calling process console.

--log-pipe
Creates a named pipe which will be populated with log entries during application lifetime. Meaningful
only in console mode.

--help
Displays help

Runtime ExecutablesRuntime Executables

Aurora Vision Executor can open .avproj files, the same as Aurora Vision Studio, however it is better to
use .avexe files here. Firstly one can have a single binary executable file for the runtime environment.
Secondly this file is encrypted so that nobody is able to look at project details. To create one, open a
project in Aurora Vision Studio and use File » Export to Runtime Executable.... This will produce an
.avexe file that can be executed directly from the Windows Explorer.

If Aurora Vision project contains any User Filter libraries, it is crucial to put their *.dll files into
the appropriate directory when running in Aurora Vision Executor. This is when exporting to .avexe file
might also be a handy option. While defining the .avexe contents, it is possible to select all the User
Filters libraries that the exported project depends on. Selected libraries are deployed then to the same
directory as generated .avexe file and the .avexe itself is set to use all User Filter libraries from its
directory.

https://docs.adaptive-vision.com/5.6/studio/hmi/HmiDesigner.html
https://docs.microsoft.com/en-us/dotnet/standard/io/pipe-operations

Defining the Runtime Executable.

In case there are any other dependencies, e.g. exposed by used User Filter libraries, one can add them
into the Aurora Vision project as an attachment in Project Explorer and also deploy with .avexe file
during export.

Project IDProject ID available in Advanced Options is an additional parameter that makes only a specific license
able to run the application. At the customer request, Aurora Vision Team can generate the key (Project ID)
and add it to the Runtime license. The same Project ID must be set for Runtime Executable export to
connect the application with the specific license. If you leave this field default, any license will be
able to run the .avexe file.

Trick: Configuration File as a Module Not Exported to AVEXETrick: Configuration File as a Module Not Exported to AVEXE

It is often convenient to have an configuration file separated from the executable so that various
parameters can be adjusted for a particular installation (but not made available to the end user). This
can be easily implemented with a simple programming idiom:

1. Use global parameters in your project for values that might require adjusting.

2. Place the global parameters in a separate module (through the Project Explorer window).

3. Exclude the module when exporting the .avexe file.

4. In the runtime environment copy the .avexe file and the module (as a separate file) with global
parameters.

5. Open the config module in the Notepad to edit it when needed.

Other Runtime OptionsOther Runtime Options

Please note that Aurora Vision Executor is only one of several options for creating end-user's
applications. Other available options are:

.NET Macrofilter Interface Generator 3 generates a native .NET assembly (a DLL file) and makes it
possible to invoke macrofilters created in Aurora Vision Studio as simple class methods from a .NET
project. Internally the execution engine of Aurora Vision Studio is used, so modifying the related
macrofilters does not require to re-compile the .NET solution. The HMI can be implemented with
WinForms, WPF or similar technologies.

C++ Code Generator 3 generates native C++ code (a CPP file) that is based on Aurora Vision Library
C++. This code can be integrated with bigger C++ projects and the HMI can be implemented with Qt, MFC
or similar libraries. Each time you modify the program in Studio, the C++ code has to be re-generated
and re-compiled.

Aurora Vision Console 3 allows to easily run created Studio applications (avproj/avexe files) on
Windows or Linux based systems. Such programs can be controlled through created WebHMI panel.

Set Aurora Vision Executor as the "system shell"Set Aurora Vision Executor as the "system shell"

On Windows systems it is possible to set Aurora Vision Executor as the "system shell", thus removing
Desktop, Menu Start etc. completely. To do this go to Settings in Aurora Vision Executor and the Startup
section. Mark the Set Aurora Vision Executor as the main system application (for the current user only).
Please be informed that this option requires administrator privileges.

https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/ProjectExplorer.html#GlobalParameters
https://docs.adaptive-vision.com/5.6/studio/technical_issues/NetMacrofilterInterface.html
https://docs.adaptive-vision.com/5.6/studio/technical_issues/CppCodeGenerator.html

Set Aurora Vision Executor as the "system shell"

Startup ApplicationsStartup Applications

It is possible to run any process before starting a program in Aurora Vision Executor. Go to Settings in
Aurora Vision Executor and the Startup section. To define a new startup program select the Add button on
the right. In a New startup program dialog box you need to specify the application path (obligatory) and
arguments (optional). It is similar to typing the application name and command-line arguments in the Run
dialog box of the Windows Start menu. The added program will appear in the list. All added programs will
start each time you run Aurora Vision Executor.

Defining Startup Applications

Startup ProjectStartup Project

It is possible to choose the project the Aurora Vision Executor should run after the startup. Go to
Settings in Aurora Vision Executor and the Startup section. To define the startup project select the ...
button on the right. In an Open dialog box you need to specify the startup project path (obligatory). The
added project's path will appear in the box. It will start each time you run Aurora Vision Executor.

Defining Startup Project

If Deep Learning Service is installed you can choose to run it on start by selecting 'Start Deep Learning
service on startup'.

Remote Access to the Runtime ApplicationRemote Access to the Runtime Application

IntroductionIntroduction

It is possible to use Aurora Vision Studio to control an Aurora Vision Executor running on a remote
computer, if only the two computers are in the same Ethernet subnet. To enable remote access in Aurora
Vision Executor, the option "Allow remote control" should be enabled. For security reasons, it is also
possible to protect connection with a password:

Enable remote executor.

UsageUsage

In Aurora Vision Studio the list of available remote systems is accessible in the Connect to Remote
Executor window which opens up after choosing the File : Connect to Remote Executor menu command:

Browse remote systems.

If an expected remote system is not visible on the list, please verify that: (1) it is configured for the
same local area network, and (2) it can access Ethernet through its firewall (in the first place verify
that in the Windows' Control Panel, Windows Firewall section, the option "Notify me when Firewall blocks a
new program" is enabled). In some local networks information about communication type and ports may be
useful to assign application access through firewall. In this case please use UDP ports 6342 and 6343 or
TCP port 6342.

When connecting to a selected device, the program will ask for the password (if it has been set):

Password protection window.

After successful connection, management of the selected executor becomes possible. Now you are able to do
several actions: Upload Files, Control Program and Get Diagnostics.

Remote executor window.

Upload Files:Upload Files:

Upload files window.

To Manage Files on remote executor, click Upload Files button. In this window it is possible to send
program files to the remote executor. By default all files are stored in the directory
<CommonApplicationData>\Aurora Vision\Aurora Vision Executor.

Program Control:Program Control:

In the Remote executor window you are able to control currently executed program. In the middle of the
window we can see the current program status and the path to the currently loaded program. Next there are
four buttons controlling program execution. Finally there is an option to open another program.

Remote file dialog window.

Diagnostics:Diagnostics:

In the Remote Executor window there is available a few diagnostic tools. Here, it is possible to preview
the execution log and a screen preview from the currently connected executor. All diagnostic options are
located at the top of the Remote executor window.

Log preview window.

Remote Image AcquisitionRemote Image Acquisition

IntroductionIntroduction

It is also possible to get images from a connected device using the remote executor. This method offers an
easy way to acquire images using a different image protocols. Remote image acquisition filters enable to
run this same code on the smart cameras (client side) as good as on developer computers without any
additional modifications.

UsageUsage

To enable remote image acquisition it is necessary to stop the executor program and enable the "Enable
smart grabber" option:

Enable Remote Image Acquisition.

In Aurora Vision Studio it is possible to use the filters from the category Camera Support\Smart to get
images from a device connected to the remote Executor system.

Currently the available image acquisition protocols are:

AvSMARTAvSMART 3 access to AvSMART,

GenICamGenICam 3 access to GenICam complaint devices,

RoseekRoseek 3 access to Roseek cameras,

SynViewSynView3 access to NET GmbH cameras,

WebCameraWebCamera3 access to DirectX complaint image sources like web cameras or frame grabbers.

To grab images using one of these protocols it is necessary to set inIpAddressinIpAddress in the filter input. The
IP Address can be checked in the Connect to Remote Executor window when "Allow remote control" option is
enabled in the Executor.

Smart_GrabImage_SynView filter properties.

If system detect that the provided IP address describes local machine the Smart_GrabImage filters will
perform all operation on local computer. So it is no need to perform any changes during transferring
project from developers machine to the client side device.

If the program is deployed to a device with another IP address then the input inIpAddressinIpAddress should be
changed to the IP of the Executor or left empty. If the input inIpAddressinIpAddress is empty then the image is
always grabbed using an appropriate local image acquisition protocol.

Available filters for the remote image acquisition:

If inDeviceIDinDeviceID is set toNILthe first found device will be used.

https://docs.adaptive-vision.com/5.6/studio/filters/Smart/index.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html
https://docs.adaptive-vision.com/5.6/studio/filter_groups/Smart_GrabImage.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html
https://docs.adaptive-vision.com/5.6/studio/filters/Smart/Smart_GrabImage_SynView.html

Performing General CalculationsPerforming General Calculations

IntroductionIntroduction

Apart from using image processing or computer vision tools, most often it is also necessary to perform
some general calculations on numeric values or geometrical coordinates. There are two ways to do this in
Aurora Vision Studio:

1. Using filters from the Standard Library.

2. Using special formula blocks.

ExampleExample

Let us assume that we need to compute the hypotenuse . Here are the two possible solutions:

The second approach, using formula blocks, is the most recommended. Data flow programming is just not well
suited for numerical calculations and standard formulas, which can be defined directly in formula blocks,
are much easier to read and understand. You can also think of this feature as an ability to embed little
spreadsheets into your machine vision algorithms.

Creating Formula BlocksCreating Formula Blocks

To create a formula block:

1. Drag and drop the Formula tool from the Toolbox (Logic & Math section) to the Program Editor:

2. Add inputs and outputs using the context menu or by clicking Add Input and Add Output links:

3. For each input define the name and the type:

Calculations using standard filters.

Calculations using formula blocks.

https://docs.adaptive-vision.com/5.6/studio/programming_model/Formulas.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/Formulas.html

4. In order to create an output, first press Add Output button. It will create a new output with template
name: outName:

Replace the highlighted Name with meaningful name. While typing a Tooltip with available options
should appear:

Example usage of each option:

After the name type equal sign = and the expression. There is no need to define a type of output.
The type will be assigned automatically.

After the name add as followed by LabelName. This label will later appear as a formula output.

After the name add label as described in the previous point. Then add colon : and directly
specify the output type:

In the last option output type is defined directly. After the name add colon : and directly
specify the output type:

Final formula should look like this:

Not only the output data of the formulas can be labeled but also inputs and outputs of other
filters outside of the formula. This way you can perform a direct call to another labeled data
inside a formula without explicitly defining new formula inputs. In the image below the input A
of the macrofilter is labeled (highlighted in violet color) and a direct call of this label (A)
is performed inside the formula block. Later the output Hypotenuse is connected via a label with
the macrofilter output, instead of linking it directly using an outgoing arrow connection.

Remarks

Existing formulas can also be edited directly in a formula block in the Program Editor.

It is also possible to create new inputs and outputs by dragging and dropping connections onto a
formula block.

Formula blocks containing incorrect formulas are marked with red background. Programs containing such
filters cannot be run.

When defining a formula for an output it is possible to use other outputs, provided that they are
defined earlier. The order can be changed through the outputs context menu.

For efficiency reasons it is advisable not to use "heavy" objects in formulas, such as images or
regions.

Syntax and SemanticsSyntax and Semantics

For complete information about the syntax and semantics please refer to the Formulas article in the
Programming Reference.

Without output label. With output label.

https://docs.adaptive-vision.com/5.6/studio/programming_model/Formulas.html

Managing Projects with Project ExplorerManaging Projects with Project Explorer

IntroductionIntroduction

Project Explorer is a window displaying elements which are contained in the currently opened project:

Modules

Macrofilters (definitions)

Global Parameters

User Types

User Filter libraries

Attachments

Its main goal is to provide a single place to browse, add, remove, rename or open the items, which are
grouped into categories in the same way as the filters in the Filter Catalog. A category may correspond to
a standard module or to a module of a User Filter library. There is also one special category,
Attachments, which appears when the user adds an external file to the project (it might be for example a
text document with a piece of documentation).

Modules in the Project Explorer.

Opening MacrofiltersOpening Macrofilters

As described in Running and Analysing Programs, there are two ways of navigating through the existing
macrofilters. One of them is with the Project Explorer window, which displays definitions of macrofilters,
not the instances. After double-clicking on a macrofilter in the Project Explorer, however, a macrofilter
instance is opened in the Program Editor. As one macrofilter definition can have zero, one or many
instances. Some special rules apply to which of the instances it is:

If possible, the most recently executed instance is opened.

If no instance has been executed yet, the most recently created one is opened.

If there are no instances at all the "ghost instance" is presented, which allows editing the
macrofilter, but will never have any data on the output ports.

Macrofilter CounterMacrofilter Counter

Macrofilter counter shows how many times a given macrofilter is used in the program.

ADVANCED NOTE:ADVANCED NOTE: If a macrofilter X is used in a macrofilter Y and there are multiple instances of the
macrofilter Y, we still consider macrofilter X being used once. Number of uses is not the same as number
of instances.

Global ParametersGlobal Parameters

If some value is used many times in several different places of a program then it should be turned into a
global parameter. Otherwise, consecutive changes to the value will require the error-prone manual process
of finding and changing all the occurrences. It is also advisable to use global parameters to clearly
distinguish the most important values from the project specification 3 for example the expected dimensions
and tolerances. This will make a program much easier to maintain in future.

In Aurora Vision Studio global parameters belong to specific modules and are managed in the Project
Explorer. To create one, click the Create New Global Parameter... button and then a dialog box will

appear where you will provide the name, the type and the value of the new item. After a global parameter
is created it can be dragged-and-dropped on filter inputs and appropriate connections will be created with
a visual label displaying the name of the parameter.

https://docs.adaptive-vision.com/5.6/studio/getting_started/RunningAndAnalysingPrograms.html#BrowsingMacrofilters
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html

Creating a global parameter.

Global parameter used in a program.

Global parameters contained in a project can also be edited in the Properties window after being selected
in the Project Explorer or in the Program Editor.

Since version 4.11 it is possible to create and manage global parameters with dedicated filters:
WriteParameter and ReadParameter. They are available in the Program Structure category of the Toolbox.

While adding a new input, "Select Global Parameter" window is displayed:

You can select an already created global parameter or create a new one.

Global parameter "inAddress" created within the filter WriteParameter can be read with the ReadParameter
filter.

Thanks to these filters you can easily read or write the values of global parameters anywhere in your
algorithm. In order to facilitate development the icon of the global parameter has different appearance
depending on whether it is overwritten somewhere in the program. The color of the icon will be red then so
that you will know that this value may change during the execution of your application.

To see how Global Parameters work in practice, check out our official example: HMI Handling Events.

Remarks:

Connected filters are not re-executed after the global parameter is changed. This is due to the fact,
that many filters in different parts of the program can be connected to one global parameters. Re-
executing all of them could cause unexpected non-local program state changes and thus is forbidden.

Do NOT use writable global parameters unless you really must. In most cases data should be passed
between filters with explicit connections, even if there are a lot of them. Writable global parameters
should be used only for some very specific tasks, most notably for configuration parameters that may
be dynamically loaded during program execution and for high level program statistics that may be
manipulated through the HMI (like the last defect time).

ModulesModules

When a project grows above 10-20 macrofilters it might be appropriate to divide it into several separate
modules, each of which would correspond to some logical part. It is advisable to create separate modules
for things like i/o communication, configuration management or for automated unit testing. Macrofilters
and global variables will be then grouped in a logical way and it will be easier to browse them.

Modules are also sometimes called "libraries of macrofilters". This is because they provide a means to
develop sets of common user's tools that can be used in many different projects. This might be very handy
for users who specialize in specific market areas and who find some standard tasks appearing again and
again.

To create a module, click the Create New module... button and then a dialog box will appear. In there

you specify the location and name of the module. The path may be absolute or relative. Modules are saved
with extension .avlib.avlib. Saving and updating the module files happens when the containing program is saved.

https://docs.adaptive-vision.com/5.6/studio/examples/hmi_handling_events.html
https://docs.adaptive-vision.com/5.6/studio/user_interface/CreatingMacrofilters.html

Module creation windows for both absolute and relative paths.

After creating a module you may move already existing macrofilters into the module by dragging them onto
the module in Project Explorer. Clicking the Create New Macrofilter... button allows you to create a

new macrofilter with the given name. During that you can access Advanced options by clicking the
appropriate button. There you can specify the parent module and access to the macrofilter. Access can be
either private or public. Private macrofilters cannot be directly used outside its module. You can also
provide a tooltip (description) for the macrofilter. This will show up in the properties section of an
instance and when hovered over in the Project Explorer. Tooltip should describe the macrofilter's purpose
and be concise. They are especially important when creating an

Macrofilter creation with advanced options.

View showing a sample tooltip.

Right clicking a macrofilter and selecting Edit properties... allows to modify their properties,

including access, after their creation.

Ways to access the editing window. The option to change the icon is highlighted

The image below shows a structure of an example program. The macrofilters have been grouped into two
Modules. Module FindDefects has macrofilters related to defect detection and a global parameter used by
the macrofilters. Notice how the ProcessImage macrofilter is grayed out. It indicates it is a private
macrofilter (here it is used by FindShapeDefects). ProcessImage cannot be used outside its module.

The other module has macrofilters related to showing and storing the results of the inspection.

Example program structure with macrofilters grouped into modules.

Here are some guidelines on how to use modules in such situations:

Create a separate module for each set of related, standard macrofilters.

Give each module a unique and clear name.

Use the English language and follow the same naming conventions as in the native filters.

Create the common macrofilters in such a way, that they do not have to be modified between different
projects and only the values of their parameters have to be adapted.

If some of the macrofilters are intended as implementation only (not to be used from other modules),
mark them as private.

It is important to note that modules containing filters interfacing with the HMI should not be shared
between programs. Every filter port connected to the HMI has a unique identifier. Those identifiers vary
between programs - ports of the same filter in different programs will have different identifiers.

Generally it is a good practice to create a separate module for all things related to the HMI. That way
every other module can be shared between programs without any problems.

Importing ModulesImporting Modules

If you want to use a module which had been created before click the Import Existing Module... . This

will open a window in which you can select modules to add. Now the path to the module will be linked to
the project. Similarly to creating a new module you can choose whether the path to it will be relative or
absolute.

Remember that modules are separate files and as such can be modified externally. This is especially
important with modules which are shared between multiple projects at the same time.

See also: Trick: INI File as a Module Not Exported to AVEXE.

https://docs.adaptive-vision.com/5.6/studio/user_interface/ExecutorApplication.html#INI

Locking ModulesLocking Modules

Sometimes users would like to hide the contents of some of their macrofilter to protect them against
unauthorized access. They can do this by placing them inside a module and locking it. To do this it is
necessary to right click on the module in the Project Explorer and select Lock Module option. User will be
then prompted to provide a password for this specific module.

Adding lock to the module.

After creating password user should see an open lock icon next to the module name in the Project Explorer.
You can work with this module exactly the same way as with any other module. What distinguishes it from
other modules is that it can be locked, which will make checking implementation of macrofilters included
inside not possible. Such modules will be similar to filters in this matter.
This operation will also obfuscate the avlib file.

Locking module in project explorer.

Macrofilters from locked modules in the program.

It is important to lock the module every time you finish working on it. In order to unlock a module you
need to select the Unlock Module option in the ProjectExplorer and enter the correct password. To
completely remove module locking feature from a selected module, use the Remove Module Lock option.

Keyboard ShortcutsKeyboard Shortcuts

IntroductionIntroduction

Many of Aurora Vision Studio actions can be invoked with keyboard shortcuts. Most of them have default

shortcuts - such as copying with , pasting with , finding elements with , saving

with , navigating with arrow keys etc.

In some controls - e.g. formula editor - there are present commonly used keyboard shortcuts for text

editors: navigating through whole words with , selecting consecutive letters/lines (

), selecting whole words (), increasing indents with ,

decreasing them with etc.

In this article you can find listed all of the less-known shortcuts.

Table of ContentsTable of Contents

1. Program Editor

2. HMI Designer

3. Properties Control

4. 3D View

5. Deep Learning Editors

Shortcuts TableShortcuts Table

Ctrl+C Ctrl+V Ctrl+F

Ctrl+S

Ctrl+Left/Right Arrow

Shift+Arrow keys Ctrl+Shift+Left/Right Arrow Tab

Shift+Tab

Command Shortcut

Program Editor
Back to Top

Run program F5

Run program with Aurora Vision Executor Ctrl+F5

Run program until selected point Ctrl+F9

Stop program Shift+F5

Pause program at current executing step Ctrl+Alt+Pause

Iterate program F6

Iterate current macrofilter Ctrl+F10

Step over F10

Step into F11

Step out Shift+F11

Insert new filter instance
Ctrl+T

Ctrl+Space

Load recent project Alt+Number

Rename currently open macrofilter F2

View program statistics F8

Toggles breakpoint for currently selected filter
and macrofilter outputs block

F9

Copy element
Ctrl+Insert

Ctrl+C

Paste element
Shift+Insert

Ctrl+V

Change currently selected macrofilter Ctrl+Number

Navigate to home macrofilter Alt+Home

Navigate to parent macrofilter Shift+Enter

Open next macrofilter in history Alt+Right Arrow

Open previous macrofilter in history Alt+Left Arrow

Extract step from selected filter/filters Ctrl+E

Add new Formula instance to current program Ctrl+Shift+E

Add new Comment instance to current program Ctrl+Shift+K

Create step macrofilter and add instance Ctrl+Shift+S

Create task macrofilter and add instance Ctrl+Shift+T

Create variant macrofilter and add instance Ctrl+Shift+V

Remove currently opened macrofilter with all its
instances

Ctrl+Shift+R

Undock currently opened macrofilter Ctrl+U

Enable/Disable selected filter instance/instances Ctrl+L

Add new/Edit existing filter comment Ctrl+M

Copy currently moving instance Hold Ctrl while moving instance

Navigate and select elements instances Shift+Up/Down/Home/End

Move selected filters Alt+Up Alt+Down

HMI Designer
Back to Top

Move currently selected control Arrows

Move currently selected control to the edge of its
container

Ctrl+Arrows

Resize currently selected control Shift+Arrows

Resize currently selected control to the edge of
its container

Ctrl+Shift+Arrows

Properties Control
Back to Top

Hide/Show selected property Ctrl+H

Restore default value of selected property Ctrl+D

Enable/Disable port in current macrofilter variant Ctrl+E

Set/Unset optional value Ctrl+P

Enable/Disable port in current macrofilter variant Ctrl+E

Change scale on property value slider from 1 to 10 Hold Shift while modifying value with slider

Change scale on property value slider from 1 to 0.1 Hold Ctrl while modifying value with slider

Change scale on property value slider from 1 to
0.01

Hold Ctrl+Shift while modifying value with slider

Insert a new line into the text Shift+Enter

3D View
Back to Top

Show bounding box B

Show grid G

Increase point size]

Decrease point size [

Move view up
Q

Up Arrow

Move view down
Z

Down Arrow

Move view left
A

Left Arrow

Move view right
D

Up Arrow

Zoom in
W

Page Up

Zoom out
S

Page Down

Decrease rotation angle Hold CTRL while rotating view

Deep Learning Editors
Back to Top

Change current class - 0 9

Move one image up Page Up

Move one image down Page Down

Save current state of the model Ctrl+S

Automatic training Alt+F2

Generate the report Alt+F3

Deep Learning Editors - Anomalies Detection only
Back to Top

Change the current image's annotation Space

Label image as good and go to the next one G

Label image as bad and go to the next one B

Deep Learning Editors - Object Classification only
Back to Top

Remove selected ROI Delete

Deep Learning Editors - Instance Segmentation only
Back to Top

Remove single instance Delete

Add new instance Space

Split the instances into separate blobs S

Deep Learning Editors - Point Location only
Back to Top

Remove selected point Delete

Working with 3D dataWorking with 3D data

IntroductionIntroduction

This article summarizes how to work with 3D data previews. Aurora Vision Studio allows you to work not
only with images or conventional data types, but also with point clouds of following types:

Surface

Point3DGrid

Point3DArray

Please note that the term surface may be used in this article to denote a point cloud of Surface type.

ToolbarToolbar

The toolbar appears the moment a point cloud is previewed:

The location of 3D tools in Aurora Vision Studio.

3D tools available in the toolbar.

Button (Tool) Description of the tool

Rotate This button permits to rotate a point cloud around the rotation center point.

Pan This button permits to move the rotation center point.

Resetting view This button permits to revert changes made by rotating or panning a point cloud.

Probe Point
Coordinates

This button permits to obtain information about coordinates of a point.

Bounding Boxes This button permits to display the bounding box of a point cloud.

Coloring Mode

This button permits to switch between different coloring modes which are divided into 4
categories:

Solid (whole point cloud is of a single color)

Along X-axis (greater values along the X-axis are colored according to the colors'
scale bar in the top right corner of the preview)

Along Y-axis (greater values along the Y-axis are colored according to the colors'
scale bar in the top right corner of the preview)

Along Z-axis (greater values along the Z-axis are colored according to the colors'
scale bar in the top right corner of the preview)

Grid Mode

This button permits to display a grid plane to your liking. There are also 4 modes
available:

None (no grid)

XY (the grid is displayed in XY plane)

XZ (the grid is displayed in XZ plane)

YZ (the grid is displayed in YZ plane)

View
Projection

Mode

This button permits to display a point cloud in 4 different modes:

Perspective (default mode)

Up (overhead view 3 showing a point cloud from above 3 looking down at XY plane)

Back (view from the back 3 looking at XZ plane)

Left (side view 3 looking at YZ plane)

World
Orientation

This button permits to display a coordinate system in 4 different modes:

Right Handed Z Up

Right Handed Y Up

Left Handed Z Up

Left Handed Y Up

Point size

This button permits to control the size of a single point within a point cloud. There
are 5 possible sizes:

Very small

Small

Medium

Large

Very large

You can also change point size by using keys and .[]

https://docs.adaptive-vision.com/5.6/studio/datatypes/Surface.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Point3DGrid.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Point3D.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/Arrays.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Surface.html

Using a computer mouseUsing a computer mouse

Aurora Vision Studio also allows you to control a 3D preview with your computer mouse. You can perform
some of the above features to analyze the point cloud without a necessity to find and switch between
buttons in the toolbar.

PreviewPreview

When you drag and drop the output, which is of 3D data type, and you have already previewed some images,
string or real values, please note that it can be only previewed in a separate view. It is not possible to
display an image and a point cloud in the very same view.

While analyzing 3D data, please pay attention to the colors' scale bar in the top right corner of the
preview:

Colors' scale bar.

It might be helpful if you want to estimate the coordinate value based on color.

You can also hide or remove surfaces from a view. To do it, you have to right-click on the information
about a preview in the top left corner of the view:

If you click Left Mouse ButtonLeft Mouse Button on a preview, it works as if you used the
Rotate button, so you can rotate a point cloud around a fixed center point

until the button is released.

If you click Right Mouse ButtonRight Mouse Button on a point cloud, a dropdown list with all
features described in the previous section appears.

If you use Mouse WheelMouse Wheel on a point cloud, you can zoom it in and out.

If you press Mouse WheelMouse Wheel on a point cloud, you can move the rotation center
point of the coordinate system (works like the "Pan" button).

Dropdown list with possible actions on previews.

As it is shown in the above image, you can:

Show Preview Source - it will indicate the filter in the Program Editor, of which the output has been
previewed

Hide - it will hide only indicated surface without removing the preview

Remove from View - it will delete the preview, leaving an empty view

HMIHMI

3D data can be displayed in the HMI as well - using the View3DBox control:

View3DBox HMI control - a point cloud is displayed in the same manner as in the preview.

It is worth mentioning that in this HMI control you can also rotate and change the rotation center of the
point cloud. For more details about designing and using HMI, please refer to HMI Controls.

https://docs.adaptive-vision.com/5.6/studio/hmi/HmiControls.html#View3DBox
https://docs.adaptive-vision.com/5.6/studio/hmi/HmiControls.html

Creating Deep Learning ModelCreating Deep Learning Model

Note:Note: The following article concerns the functionalities related to another product: Deep LearningDeep Learning
Add-onAdd-on. More information are available here.

Contents:Contents:

1. Introduction

2. Workflow

3. Detecting anomalies 2

4. Detecting features

5. Classifying objects

6. Segmenting instances (deprecated)

7. Locating points

8. Locating objects

9. Tips and tricks

IntroductionIntroduction

Deep Learning editors are dedicated graphical user interfaces for Deep Learning ModelDeep Learning Model objects (which
represent training results). Each time a user opens such an editor, they are able to add or remove images,
adjust parameters, and perform new training.

Since version 4.10, it is also possible to open the Deep Learning Editor as a stand-alone application,
which is especially useful for re-training models with new images in a production environment.

Since 5.4 version, the Aurora Vision Deep Learning tool-chain has has transitioned to a completely new
training engine. Because of that, some of the Deep Learning tools have been deprecated: SegmentingSegmenting
instancesinstances and Detecting anomalies 1Detecting anomalies 1. They are trainable in version 5.3 and older versions only. In more
recent releases, the models can only be inferred.

Warning:Warning: .TIFF.TIFF images cannot be used with Aurora Vision Deep Learning tools.

Requirements:

A Deep Learning license is required to use Deep Learning editors and filters.

The Deep Learning Service must be up and running to perform model training.

Warning:Warning: Some of the Deep Learning algorithms, e.g. Instance Segmentation (deprecated), require a lot
of memory, therefore we highly recommend using the GPU version of Aurora Vision Deep Learning.

The currently available Deep Learning tools include:

1. Anomaly DetectionAnomaly Detection 3 for detecting unexpected object variations; trained with sample images marked
simply as good or bad.

2. Feature DetectionFeature Detection 3 for detecting regions of defects (such as surface scratches) or features (such
as vessels on medical images); trained with sample images accompanied by precisely marked ground-truth
regions.

3. Object ClassificationObject Classification 3 for identifying the name or the class of the most prominent object in an
input image; trained with sample images accompanied by the expected class labels.

4. Instance Segmentation (deprecated)Instance Segmentation (deprecated) 3 for simultaneously locating, segmenting, and classifying
multiple objects in an image; trained with sample images accompanied by precisely marked regions of
each individual object.

5. Point LocationPoint Location 3 for locating and classifying multiple key points; trained with sample images
accompanied by marked points indicating expected classes.

6. Read CharactersRead Characters 3 for locating and classifying multiple characters; this tool uses a pretrained
model and cannot be manually retrained by a user, so it is not elaborated on further in this entry.

7. Text LocationText Location 3 for locating text; this tool uses a pretrained model and cannot be manually
retrained by a user, so it is not elaborated on further in this entry.

8. Object LocationObject Location 3 for locating and classifying multiple objects; trained with sample images
accompanied by marked bounding rectangles indicating expected classes.

Technical details about these tools are available in the Machine Vision Guide: Deep Learning, while this
article focuses on the training graphical user interface.

WorkflowWorkflow

You can open a Deep Learning EditorDeep Learning Editor via:

a filter in the Aurora Vision Studio:

1. Place the relevant DL filter (e.g. DL_DetectFeatures or DL_DetectFeatures_Deploy) in the Program
Editor.

2. Go to its Properties.

3. Click on the button next to the inModelDirectoryinModelDirectory or inModelId.ModelDirectoryinModelId.ModelDirectory parameter.

a standalone Deep Learning EditorDeep Learning Editor application:

1. Open a standalone Deep Learning EditorDeep Learning Editor application (which can be found in the Aurora VisionAurora Vision
Studio installation folderStudio installation folder as "DeepLearningEditor.exe", in the Aurora Vision folder in the
Start menuStart menu, or in the Aurora Vision Studio application in Tools menuTools menu).

2. Choose whether you want to create a new model or use an existing one:

Creating a new modelCreating a new model: Select the relevant tool for your model and press OK, then select or
create a new folder where files for your model will be contained and press OK.

Choosing existing modelChoosing existing model: Navigate to the folder containing your model files 3 either write
the path to it, click on the button next to field to browse to it, or select one of the
recent paths if there are any; then press OK.

The Deep Learning model preparation process is usually split into the following steps:

1. Loading imagesLoading images 3 load training images from the disk.

2. Labeling imagesLabeling images 3 mark features or attach labels to each training image.

3. Assigning image setsAssigning image sets 3 allocate images to the train, test, or validation set.

4. Setting the region of interest (optional)Setting the region of interest (optional) 3 select the area of the image to be analyzed.

5. Adjusting training parametersAdjusting training parameters 3 select training parameters, preprocessing steps, and augmentations
specific to the application at hand.

6. Training the model and analyzing results.Training the model and analyzing results.

https://docs.adaptive-vision.com/deep_learning/
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html
https://docs.adaptive-vision.com/5.6/studio/filters/DeepLearning/DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/studio/filters/DeepLearning/DL_DetectFeatures_Deploy.html

Overview of a Deep Learning Editor.

Important features:

Pre-processing buttonPre-processing button 3 located in the top toolbar; allows you to see the changes applied to a
training image, e.g., grayscale or downsampling.

Current Model directoryCurrent Model directory 3 located in the bottom toolbar; allows you to switch to a model in another
directory or to simply see which model you are actually working on.

Show Model Details buttonShow Model Details button 3 located next to the previous control; allows you to display information
about the current model and save it to a file.

Train & Resume buttonsTrain & Resume buttons 3 allow you to start training or resume training in case you have changed
some of training parameters (except for Convert to GrayscaleConvert to Grayscale value).

Saving buttons:

SaveSave 3 saves the current model in a chosen location.

Save & ExitSave & Exit 3 saves the model and then exits the Deep Learning Editor.

Exit Without SavingExit Without Saving 3 exits the editor, but the model is not saved.

Open automatic training window buttonOpen automatic training window button 3 allows you to prepare a training series for different
parameters. If you are not sure, which parameter settings will give you the best result, you can prepare a
combination for each value to compare the results. The test parameters can be prepared automatically with
Generate new gridGenerate new grid or manually entered. After setting the parameters you need to start the test. The
settings and the results are shown in the grid, one row for one model.

Show columnsShow columns 3 hides / shows model parameters you will use in your test. The view is common for all
deep learning tools. To create an appropriate grid search, choose the parameters which are correct for
the used tool (the ones you can see in Training Parameters). For DL_DetectAnomalies2 choose the
network type first to see the appropriate parameters.

Generate new gridGenerate new grid 3 prepares the search grid for the given parameters. Only parameters chosen in
Show columnsShow columns are available. The values should be separated with a semicolon (;).

Duplicate rowsDuplicate rows 3 duplicates a training parameters configuration. If the parameters inside the row
aren't modified, this model will use the same settings twice for the training.

Import from editorImport from editor 3 copies the training parameters from the Editor WindowEditor Window to the last search grid
row.

Show reportShow report 3 shows the report for the chosen model (the chosen row). This option is available only
if you choose Save ReportsSave Reports before starting the training session.

Additional options:Additional options:

Export grid to CSV fileExport grid to CSV file 3 exports the grid of training parameters to a CSV file.

Import grid from CSV fileImport grid from CSV file 3 imports the grid of training parameters from a CSV file.

RemoveRemove 3 removes a chosen training configuration.

ClearClear 3 clears the whole search grid.

https://docs.adaptive-vision.com/5.6/studio/filters/DeepLearning/DL_DetectAnomalies2.html

Stopping conditions of a single trainingStopping conditions of a single training 3 determines when a single training stops.

Iteration Count

Time

Iterations without improvement

Validation Accuracy

OptionsOptions

Save modelsSave models 3 saves each trained model in the defined folder.

Save reportsSave reports 3 saves a report for each trained model in the folder defined for saving models.

StatisticsStatistics 3 shows statistics for all trainings.

Avg. ScoreAvg. Score 3 shows average score of all trained models for all images.

Avg. Test ScoreAvg. Test Score 3 shows average score of all trained models for test images.

Total timeTotal time 3 sums up time of each training.

Threshold selectorThreshold selector 3 choses for which image group the best threshold is searched.

All ImagesAll Images

Test ImagesTest Images

StartStart 3 starts the training series with the first defined configuration.

StopStop 3 stops the training series.

ContinueContinue 3 continues the stopped training series with the next configuration of the parameters.

Detecting anomalies 2 (classification-based approach)Detecting anomalies 2 (classification-based approach)

In this tool, the user only needs to mark which images contain correct cases (good) or incorrect ones
(bad). Training is performed on good images only. Inference can later be performed on both good and bad
images to determine a suitable threshold.

DL_DetectAnomalies2 performs one-class classification of each part of the input image.

1. Marking Good and Bad samples and dividing them into Test, Training and Validation1. Marking Good and Bad samples and dividing them into Test, Training and Validation
data.data.

Click on a question mark icon to label each image in the training set as GoodGood or BadBad. Green and red icons
on the right side of the training images indicate to which set the image belongs. Alternatively, you can
use Add images and mark...Add images and mark.... Then divide the images into TrainTrain or TestTest by clicking on the left label on
an image. Remember that all bad samples should be marked as TestTest.

Labeled images in Deep Learning Editor.

2. Configuring augmentations2. Configuring augmentations

It is usually recommended to add some additional sample augmentations, especially when the training set is
small. For example, the user can add additional variations in pixel intensity to prepare the model for
varying lighting conditions on the production line. Refer to "Augmentation" section for detailed
description of parameters: Deep Learning 3 Augmentation.

3. Reducing region of interest3. Reducing region of interest

Reduce the region of interest to focus only on the important part of the image. Reducing the region of
interest will speed up both training and inference.

Please note that the Region of Interest in this tool is the same for each image in a training set and it
cannot be adjusted individually. As a result, this Region of Interest is automatically applied during the
execution of a model, so a user has no impact on its size or shape in the Program Editor.

https://docs.adaptive-vision.com/5.6/studio/filters/DeepLearning/DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

By default, region of interest contains the whole image.

4. Setting training parameters4. Setting training parameters

Model ComplexityModel Complexity 3 defines the size of the resulting model.

Max TranslationMax Translation 3 determines the spatial tolerance of the model. It's available only for the GoldenGolden
TemplateTemplate approach.

Results are marked as rectangles of either of two colors: green (classified as good) or red (classified as
bad).

For more details, read Deep Learning 3 Setting parameters.

5. Analyzing results5. Analyzing results

The window shows a histogram of sample scores and a heatmap of found defects. The right column contains a
histogram of scores computed for each image in the training set. Additional statistics are displayed below
the histogram.

To evaluate the trained model, the Evaluate: This ImageEvaluate: This Image or Evaluate: All ImagesEvaluate: All Images buttons can be used.
It can be useful after adding new images to the data set or after changing the area of interest.

Heatmap indicates the most possible locations of defects.

After training, two border values are computed:

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures

1. Maximum good sample score (T1) 3 all values from 0 to T1 are marked as Good.

2. Minimum bad sample score (T2) 3 all values greater than T2 are marked as Bad.

All scores between T1 and T2 are marked as "Low quality". Results in this range are uncertain and may not
be correct. Filters contain an additional output outIsConfidentoutIsConfident which determines the values which are not
in the T1-T2 range.

After evaluation, additional filtering options may be used in the list of training images.

Filtering the images in the training set.

Interactive histogram toolInteractive histogram tool

DetectAnomalies filters measure deviation of samples from the normal image appearances learned during the
training phase. If the deviation exceeds a given threshold, the image is marked as anomalous. The
suggested threshold is automatically calculated after the training phase, but it can also be adjusted by
the user in the Deep Learning Editor using an interactive histogram tool described below.

After the training phase, scores are calculated for every training sample and are presented in the form of
a histogram; good samples are marked with green, and bad samples with red bars. In an ideal case, the
scores for good samples should be all lower than for bad samples, and the threshold should be
automatically calculated to give the optimal accuracy of the model. However, the groups may sometimes
overlap because of:

1. incorrectly labeled samples,

2. bad training parameters,

3. ambiguous definition of the expected defects,

4. high variability of the samples appearance or environmental conditions.

In order to achieve more robust threshold, it is recommended to perform training with a large number of
samples from both groups. If the number of samples is limited, our software makes it possible to manually
set the uncertainty area with additional thresholds (the information about the confidence of the model can
then be obtained from the hidden outIsConfident filter output).

The histogram tool where green bars represent correct samples and red bars represent anomalous samples. T
marks the main threshold and T1, T2 define the area of uncertainty.

Left: a histogram presenting well-separated groups indicating a good accuracy of the model. Right: a poor
accuracy of the model.

Detecting features (segmentation)Detecting features (segmentation)

In this tool, the user has to define each feature class and then mark features on each image in the
training set. This technique is used to find object defects like scratches or color changes, and for
detecting image parts trained on a selected pattern.

1. Defining feature classes (Marking class)1. Defining feature classes (Marking class)

First, the user has to define classes of defects. Generally, they should be features that the user would
like to detect on images. Multiple different classes can be defined, but it is not recommended to use more
than a few.

The Class editor is available under the sprocket wheel icon in the top bar.

To manage classes, the AddAdd, RemoveRemove or RenameRename buttons can be used. To customize appearance, the color of
each class can be changed using the Change ColorChange Color button.

In this tool, it is possible to define more classes of defects.

The current class for editing is displayed on the left, the user can select a different class by clicking.

Use the drawing tool to mark features on the input images. Tools such as BrushBrush or RectangleRectangle can be used
for selecting features.

In addition, class masks can be imported from external files. There are buttons for Import Import and Export Export of
created classes so that the user can create an image of a mask automatically prior to a Deep Learning
model.

The image mask should have the same size as the selected image in the input set. When importing an image
mask, all non-black pixels will be included in the current mask.

The most important features of the tool.

The user can also load multiple images and masks at the same time, using Add images and masksAdd images and masks button.

Selecting path to images and masks.

The directory containing input images should be selected first. Then, directories for each feature class
can be selected below. Images and masks are matched automatically using their file names. For example, let
us assume that "images" directory contains images 001.png, 002.png, 003.png; "mask_class1" directory
contains 001.png, 002.png, 003.png; and "mask_class2" directory contains 001.png, 002.png, 003.png. Then
"images\001.png" image will be loaded together with "mask_class1\001.png" and "mask_class2\001.png" masks.

2. Reducing region of interest2. Reducing region of interest

The user can reduce the input image size to speed up the training process. In many cases, the number of
features on an image is very large, and most of them are the same. In such cases, the region of interest
can also be reduced.

On the top bar, there are tools for applying the current ROI to all images, as well as for resetting the
ROI.

Setting ROI.

3. Setting training parameters3. Setting training parameters

Network depthNetwork depth 3 chooses one of several predefined network architectures varying in their complexity.
For bigger and more complex image patterns, a higher depth might be necessary.

Feature sizeFeature size 3 the size of an image part that will be analyzed with one pass through the neural
network. It should be significantly bigger than any item of interest, but not too big, 3 as the bigger
the feature size, the more difficult and time consuming the training process is.

Stopping conditionsStopping conditions 3 define when the training process should stop.

For more details, please refer to Deep Learning 3 Setting parameters and Deep Learning 3 Augmentation.

4. Model training4. Model training

During training, three main series are visible: training accuracy, validation accuracy, and loss. The
training and validation charts should have a similar, increasing pattern. The loss chart should decrease.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

The training process chart.

5. Result analysis5. Result analysis

Image scores (heatmaps) are displayed in red after using the model for evaluation of the image. These
scores indicate the association of a specific part of the image to the currently selected feature class.

Due to the lack of context on the image border, correctly detecting objects at the image edges is
problematic. Therefore, the heatmaps returned by the network focus on the image content beyond the edges
without analysing the data located on the image border. The thickness of the skipped frame depends
directly on the patch size parameter and ranges from 6 to 12 pixels. When the inRoiinRoi is applied, the border
is removed from the selected image region.

Evaluate: This ImageEvaluate: This Image and Evaluate: All ImagesEvaluate: All Images buttons can be used to classify images. It can be useful
after adding new images to the data set or after changing the area of interest.

Image after classification.

In the top left corner of the editor, a green rectangle visualizes the selected feature size.

Classifying objectsClassifying objects

In this tool, the user only has to label images with respect to a desired number of classes.
Theoretically, the number of classes that a user can create is infinite, but please note that you are
limited by the amount of data your GPU can process. Labeled images will allow the user to train a model
and determine features which will be used to evaluate new samples and assign them to the proper classes.

1. Editing number of classes1. Editing number of classes

By default, two classes are defined. If the problem is more complex than that, the user can edit classes
and define more if needed. Once the user is ready with the definition of classes, images can be labeled.

https://docs.adaptive-vision.com/5.6/studio/filters/DeepLearning/DL_DetectFeatures.html

Using Class Editor.

2. Labeling samples2. Labeling samples

Labeling of samples is possible after adding training images. Each image has a corresponding drop-down
list which allows for assigning a specific class. It is possible to assign a single class to multiple
images by selecting desired images in the Deep Learning Editor.

Labeling images with classes.

3. Reducing region of interest3. Reducing region of interest

Reduce the region of interest to focus only on the important part of the image. Reducing the region of
interest will speed up both training and classification. By default, the region of interest contains the
whole image.

To get the best classification results, use the same region of interest for training and classification.

Changed region of interest.

4. Setting training parameters4. Setting training parameters

Network depthNetwork depth 3 predefined network architecture parameter. For more complex problems, a higher depth
might be necessary.

Detail levelDetail level 3 level of detail needed for a particular classification task. For the majority of
cases, the default value of 1 is appropriate, but if images of different classes are distinguishable
only by small features, increasing the value of this parameter may improve classification results.

Stopping conditionsStopping conditions 3 define when the training process should stop.

For more details, please refer to Deep Learning 3 Setting parameters and Deep Learning 3 Augmentation.

5. Performing training5. Performing training

During training, three main series are visible: training accuracy, validation accuracy, and loss. The
training and validation charts should have a similar, increasing pattern. The loss chart should decrease.

More detailed information is displayed below the chart:

current training statistics (training and validation accuracy),

number of processed samples (depends on the number of images),

elapsed time.

Training object classification model.

The training process can take a couple of minutes or even longer. It can be manually finished if needed.
The final result of one training is one of the partial models that achieved the highest validation
accuracy (not necessarily the last one). Consecutive training attempts will prompt the user whether to
save a new model or keep the old one.

6. Analyzing results6. Analyzing results

The window shows a confusion matrix which indicates how well the training samples have been classified.

The image view contains a heatmap which indicates which part of the image contributed the most to the
classification result.

Evaluate: This ImageEvaluate: This Image and Evaluate: All ImagesEvaluate: All Images buttons can be used to classify training images. It can
be useful after adding new images to the data set or after changing the area of interest.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

Confusion matrix and class assignment after the training.

Sometimes it is hard to guess the right parameters in the first attempt. The picture below shows a
confusion matrix that indicates inaccurate classification during the training (left).

Confusion matrices for model that needs more training (left) and for model well trained (right).

It is possible that the confusion matrix indicates that the trained model is not 100% accurate with
respect to training samples (numbers assigned exclusively on the main diagonal represent 100% accuracy).
The user needs to properly analyze this data, and use it to their advantage.

Confusion matrix indicating good generalization.

Too many erroneous classifications indicate poor training. A few of them may indicate that the model is
properly focused on generalization rather than exact matching to training samples (possible overfitting).
Good generalization can be achieved if images used for training are varied (even among a single class). If
the provided data is not varied within classes (user expects exact matching), and still some images are
classified outside the main diagonal after the training, the user can:

increase the network depth,

prolong training by increasing the number of iterations,

increase the amount of data used for training,

use augmentation,

increase the detail level parameter.

Segmenting instances (deprecated)Segmenting instances (deprecated)

Warning:Warning: The Instance SegmentationInstance Segmentation model is trainable in 5.3 and older versions only. In more recent
releases, the models can be only inferred.

In this tool, a user needs to draw regions (masks) corresponding to the objects in the scene and specify
their classes. These images and masks are used to train a model which then in turn is used to locate,
segment, and classify objects in the input images.

1. Defining object classes1. Defining object classes

First, a user needs to define classes of objects that the model will be trained on and that later it will
be used to detect. Instance segmentation model can deal with single as well as multiple classes of
objects.

Class editor is available under the Class Editor button.

To manage classes, the AddAdd, RemoveRemove or RenameRename buttons can be used. To customize appearance, the color of
each class can be changed using the Change Color button.

Using Class Editor.

2. Labeling objects2. Labeling objects

After adding training images and defining classes, a user needs to draw regions (masks) to mark objects in
images.

To mark an object, the user needs to select a proper class in the Current Class drop-down menu and click
the Add Instance button (green plus). Alternatively, for convenience of labeling, it is possible to apply
Automatic Instance CreationAutomatic Instance Creation which allows a user to draw quickly masks on multiple objects in the image
without having to add a new instance every time.

Use the drawing tool to mark objects on the input images. Multiple tools such as brush and shapes can be
used to draw object masks. Masks are the same color as previously defined for the selected classes.

The Marked Instances list in the top left corner displays a list of defined objects for the current image.
If an object does not have a corresponding mask created in the image, it is marked as "(empty)". When an
object is selected, a bounding box is displayed around its mask in the drawing area. A selected object can
be modified in terms of a class (Change Class button) as well as a mask (by simply drawing new parts or
erasing existing ones). The Remove InstanceRemove Instance button (red cross) allows you to completely remove a selected
object.

Labeling objects.

3. Reducing region of interest3. Reducing region of interest

Reduce the region of interest to focus only on the important part of the image. By default, region of
interest contains the whole image.

Changing region of interest.

4. Setting training parameters4. Setting training parameters

Network depthNetwork depth 3 predefined network architecture parameter. For more complex problems, a higher depth
might be necessary.

Stopping conditionsStopping conditions 3 define when the training process should stop.

For more details, read Deep Learning 3 Setting parameters.

Details regarding augmentation parameters: Deep Learning 3 Augmentation

5. Performing training5. Performing training

During training, two main series are visible: training error and validation error. Both charts should have
a similar pattern. If a training session was run before, the third series with previous validation error
is also displayed.

More detailed information is displayed below the chart:

current iteration number,

current training statistics (training and validation error),

number of processed samples,

elapsed time.

Training instance segmentation model.

Training may be a long process. During this time, training can be stopped. If no model is present (first
training attempt), the model with best validation accuracy will be saved. Consecutive training attempts
will prompt a user whether to replace the old model.

6. Analyzing results6. Analyzing results

The window shows the results of instance segmentation. Detected objects are displayed on top of the
images. Each detection consists of the following data:

class (identified by a color),

bounding box,

model-generated instance mask,

confidence score.

Evaluate: This ImageEvaluate: This Image and Evaluate: All ImagesEvaluate: All Images buttons can be used to perform instance segmentation on
the provided images. It can be useful after adding new images to the data set or after changing the area
of interest.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

Instance segmentation results visualized after the training.

Instance segmentation is a complex task, therefore, it is highly recommended to use data augmentations to
improve the network's ability to generalize learned information. If results are still not satisfactory,
the following standard methods can be used to improve model performance:

providing more training data,

increasing the number of training iterations,

increasing the network depth.

Locating pointsLocating points

In this tool, the user defines classes and marks key points in the image. This data is used to train a
model which then is used to locate and classify key points in images.

1. Defining classes1. Defining classes

First, a user needs to define classes of key points that the model will be trained on and later used to
detect. Point location model can deal with single as well as multiple classes of key points. If the size
of your classes differs greatly, it is better to prepare two, or more, different models than one.

Class editor is available under the Class Editor button.

To manage classes, the AddAdd, RemoveRemove, or RenameRename buttons can be used. The color of each class can be changed
using the Change ColorChange Color button.

Using Class Editor.

2. Marking key points2. Marking key points

After adding training images and defining classes, a user needs to mark points in images.

To mark an object, a user needs to select a proper class in the Current Class drop-down menu and click the
Add Point button. Points have the same color as previously defined for the selected class.

The Selected Points list in the top right corner displays a list of defined points for the current image.
A point can be selected either from the list, or directly on the image area. A selected point can be
moved, removed (Remove PointRemove Point button), or has its class changed (Change ClassChange Class button).

Marking points.

3. Reducing region of interest3. Reducing region of interest

Reduce the region of interest to focus only on the important part of the image and to speed up the
training process. By default, the region of interest contains the whole image.

Changing region of interest.

4. Setting training parameters4. Setting training parameters

Network depthNetwork depth 3 predefined network architecture parameter. For more complex problems, a higher depth
might be necessary.

Feature sizeFeature size 3 the size of an small object or of a characteristic part. If images contain objects of
different scales, it is recommended to use feature size slightly larger than the average object size,
although it may require experimenting with different values to achieve optimal results.

Stopping conditionsStopping conditions 3 define when the training process should stop.

For more details, read Deep Learning 3 Setting parameters.

Details regarding augmentation parameters: Deep Learning 3 Augmentation

5. Performing training5. Performing training

During training, three main series are visible: training accuracy, validation accuracy, and loss. The
training and validation charts should have a similar, increasing pattern. The loss chart should decrease.

More detailed information is displayed below the chart:

current iteration number,

current training statistics (training and validation accuracy),

number of processed samples,

elapsed time.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

Training point location model.

Training may be a long process. During this time, training can be stopped. If no model is present (first
training attempt), the model with best validation accuracy will be saved. Consecutive training attempts
will prompt the user whether to replace the old model.

6. Analyzing results6. Analyzing results

The window shows the results of point location. Detected points are displayed on top of the images. Each
detection consists of the following data:

visualized point coordinates,

class (identified by a color),

confidence score.

Evaluate: This ImageEvaluate: This Image and Evaluate: All ImagesEvaluate: All Images buttons can be used to perform point location on the
provided images. It may be useful after adding new training or test images to the data set or after
changing the area of interest.

Point location results visualized after the training.

It is highly recommended to use data augmentations (appropriate to the task) to improve the network's
ability to generalize learned information. If results are still not satisfactory, the following standard
methods can be used to improve model performance:

changing the feature size,

providing more training data,

increasing the number of training iterations,

increasing the network depth.

Locating objectsLocating objects

In this tool, a user needs to draw rectangles bounding the objects in the scene and specify their classes.
These images and rectangles are used to train a model to locate and classify objects in the input images.
This tool doesn't require from a user to mark the objects as precisely as it is required for segmenting
instances.

1. Defining classes1. Defining classes

First, a user needs to define classes of objects that the model will be trained on and later used to
detect. Object location model can deal with single as well as multiple classes of objects.

The class editor is available under the Class EditorClass Editor button.

To manage classes, the AddAdd, RemoveRemove, or RenameRename buttons can be used. The color of each class can be changed
using the Change ColorChange Color button.

Using Class Editor.

2. Marking bounding rectangles2. Marking bounding rectangles

After adding training images and defining classes, a user needs to mark rectangles in images.

To mark an object, a user needs to click on a proper class from the Class Toolbar and click the CreatingCreating
RectangleRectangle button. Rectangles have the same color as previously defined for the selected class.

A rectangle can be selected directly on the image area. A selected rectangle can be moved, rotated, and
resized to fit it to the object, removed (Remove RegionRemove Region button) or has its class changed (Right-click on
the rectangle » Change Class button).

Marking rectangles.

3. Reducing region of interest3. Reducing region of interest

Reduce the region of interest to focus only on the important part of the image and to speed up the
training process. By default, the region of interest contains the whole image.

Changing region of interest.

4. Setting training parameters4. Setting training parameters

Detail levelDetail level 3 level of detail needed for a particular classification task. For the majority of
cases, the default value of 3 is appropriate, but if images of different classes are distinguishable
only by small features, increasing the value of this parameter may improve classification results.

Stopping conditionsStopping conditions 3 define when the training process should stop.

For more details, read Deep Learning 3 Setting parameters.

Details regarding augmentation parameters: Deep Learning 3 Augmentation.

5. Performing training5. Performing training

During training, three main series are visible: training error, validation error, and loss. All charts
should have a similar decreasing pattern.

More detailed information is displayed below the chart:

current iteration number,

current training statistics (training and validation error),

number of processed samples,

elapsed time.

Training object location model.

Training may be a long process. During this time, training can be stopped. If no model is present (first
training attempt), the model with best validation accuracy will be saved. Consecutive training attempts
will prompt the user whether to replace the old model.

6. Analyzing results6. Analyzing results

The window shows the results of object location. Detected rectangles are displayed around the objects.
Each detection consists of the following data:

visualized rectangle (object) coordinates,

class (identified by a color),

confidence score.

Evaluate: This ImageEvaluate: This Image and Evaluate: All ImagesEvaluate: All Images buttons can be used to perform object location on the
provided images. It may be useful after adding new training or test images to the data set or after
changing the area of interest.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#architectures
https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html#augmentation

Object location results visualized after the training.

It is highly recommended to use data augmentations (appropriate to the task) to improve the network's
ability to generalize learned information. If results are still not satisfactory the following standard
methods can be used to improve model performance:

changing the detail level,

providing more training data,

increasing the number of training iterations or extending the duration of the training.

Tips and tricksTips and tricks

Location of useful functions

Auto labelAuto label

It is a helpful feature when operating on bigger datasets, when a lot of labeling is necessary. First, you
need to properly label at least 2 images (10 is recommended) and train the model with them. If the results
are satisfactory, you can add more images to your training set, select them all, and press Auto LabelAuto Label in
the Deep Learning Editor.

For supervised models, the operations needs to be performed for each class you have. For unsupervised
models, you should do it once. Remember to always check if the masks are properly selected and correct any
mistakes before continuing the training.

Auto assign setsAuto assign sets

As of version 5.4, some of the tools may require Validation set for the training. If you are not sure
which images should be picked, you can press the Auto Assign SetsAuto Assign Sets button. That way, from your training
set, some validation images will be chosen randomly.

Model historyModel history

It is possible to access previously trained models. You can do so by pressing the looped arrow icon in the
bottom left corner of the Deep Learning Editor. If you right click on a selected model, you will be able
to select it instead of the current one. From that level, it is also possible to remove the models you do
not need.

Report generatorReport generator

It is possible to generate a report of currently used model and view it, as long as the path to the images
remains unchanged. To do so, simply press the report button in the editor and specify the location that
you want it to be saved to.

Automated TrainingAutomated Training

For the tutorial on this tool, refer to the Automated Training section in this article.

See also:See also:

Machine Vision Guide: Deep Learning 3 Deep Learning technique overview,

Deep Learning - Getting Started 3 installation and configuration of Aurora Vision Deep Learning.

https://docs.adaptive-vision.com/5.6/studio/machine_vision_guide/DeepLearning.html
https://docs.adaptive-vision.com/5.6/studio/appendices/DeepLearningInstallation.html

Managing WorkspacesManaging Workspaces

Workspace window enables user a convenient way to store datasets grouped by this same category or purpose.
For example single workspace may be created for a single project like "Part Inspection" and each included
dataset may represent inspection from different day or images of the different part types.

Example Workspace window with examples dataset.

Using Filmstrip ControlUsing Filmstrip Control

1. Toolbox

2. Setting Basic Properties

3. Editing Geometrical Primitives

4. Testing Parameters in Real Time

5. Linking or Loading Data From a File

6. Labeling Connections

7. Invalid Connections

8. Property Outputs

1. Additional Property Outputs

9. Expanded Input Structures

10. Comment Blocks

11. Extracting Macrofilters (The Quick Way)

12. Creating Macrofilters in the Project Explorer

13. Trick: Configuration File as a Module Not Exported to AVEXE

14. Macrofilter Counter

15. Global Parameters

16. Modules

17. Importing Modules

18. Locking Modules

19. Table of Contents

Introduction
Workflow
Detecting anomalies 1 (deprecated)
Detecting anomalies 2 (classification-based approach)

1. 4. Setting training parameters

Detecting features (segmentation)
Classifying objects
Segmenting instances (deprecated)
Locating points
Locating objects

Tips and tricks

1. Overview

2. Common Tasks

3. See Also

OverviewOverview

Filmstrip control is a powerful tool for controlling the execution of the program in the Offline Mode
where the Filmstrip data is accessed with the ReadFilmstrip filters and through the bound outputs of the
Online-Only filters.

Filmstrip window with a one-channel dataset.

The data presented in the Filmstrip control is arranged in the grid layout, where the rows represents the
Channels and the columns represents the Samples.

Additionally, the control enables most common operations over the current workspace, i.e., adding Datasets
and Channels.

Changing the current dataset is as easy as selecting one from the datasets combo box:

Dataset selection.

To keep the program consistent, the to be selected dataset must contain channels with the same names as
channels bound in the current Worker Task.

Common TasksCommon Tasks

Dragging a channel from the Filmstrip control onto the Program Editor empty area inserts the
ReadFilmstrip filter assigned to that channel,

Dragging a channel from the Filmstrip control onto the filter instance output binds the output with
that channel, as long as:

The filter is the Online-Only filter,

The filter is in the ACQUIRE section of the Worker Task,

The output data type is the same as the channel data type.

Dragging files onto the Filmstrip control empty area creates a new Channel with the dragged files
included.

Dragging files onto the existing channel within the Filmstrip control appends the dragged data to that
channel, if only the dragged data type match the channel type.

Double-click on the Filmstrip sample executes one program iteration with the clicked sample.
Requirements:

The Offline mode is active

There is at least one channel assigned in the Single-Threaded application's Worker Task or in the
Multi-Threaded application's Primary Worker Task

See AlsoSee Also

1. Managing Workspaces - extensive description how to manage dataset workspaces in Aurora Vision Studio.

2. Offline Mode - the mode that enables access to the Channel data items.

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html
https://docs.adaptive-vision.com/5.6/studio/filters/Filmstrip/ReadFilmstrip.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html#BindingOutputsAccess
https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html#OnlineOnlyFilters
https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html#Sample
https://docs.adaptive-vision.com/5.6/studio/filters/Filmstrip/ReadFilmstrip.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html#OnlineOnlyFilters
https://docs.adaptive-vision.com/5.6/studio/programming_model/TestingDebugging.html#Singlethreaded
https://docs.adaptive-vision.com/5.6/studio/programming_model/TestingDebugging.html#Multithreaded
https://docs.adaptive-vision.com/5.6/studio/user_interface/Workspaces.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/OfflineMode.html
https://www.adaptive-vision.com/

	Aurora Vision Studio 5.6
	User Interface
	Complexity Levels
	Introduction
	Available Levels
	Changing Complexity Level
	Finding Filters
	Introduction
	Toolbox
	Sections
	Choosing Filter from Tools
	The Search Box
	Program Editor
	Ctrl+Space / Ctrl+T
	Search Window
	Ctrl+F
	Rules
	Further information
	Connecting and Configuring Filters
	Connecting with Other Filters
	Setting Basic Properties
	Editing Geometrical Primitives
	Testing Parameters in Real Time
	Linking or Loading Data From a File
	Connecting HMI and Global Parameters
	Writable and Readable Global Parameters
	Labeling Connections
	Invalid Connections
	Property Outputs
	Additional Property Outputs
	What Do IsNil and IsEmpty Mean:
	Expanded Input Structures
	Comment Blocks
	Creating Macrofilters
	Introduction
	Extracting Macrofilters (The Quick Way)
	Defining the Interface
	Adding Registers
	Creating Macrofilters in the Project Explorer
	Copying Macrofilters
	The StartUp Program
	Macrofilter Guidelines
	Creating Models for Template Matching
	Introduction
	Creating a Model
	Basic
	Expert
	Performing Template Matching
	See also:
	Preparing Rectification Transform Map
	Overview
	Camera Calibration Page
	World to Image Transform Page
	Rectification Map Generator Page
	Relation between the Calibration Editor and filters
	Further readings
	Creating Text Segmentation Models
	Creating Golden Template Models
	Remarks:
	Creating Models for Golden Template
	Introduction
	Image Preparation
	Model Creation
	Creating Text Recognition Models
	Auto-tuning Datacode Parameters
	Introduction
	Basic Operation
	Conservative Optimization
	Single and Multiple Codes Mode
	Single and Multiple Images Mode
	Auto-tune Parameters
	Analysing Filter Performance
	Seeing More in the Diagnostic Mode
	Diagnostic Filter Instances
	Example
	Deploying Programs with the Runtime Application
	Introduction
	Usage
	Console mode
	Runtime Executables
	Trick: Configuration File as a Module Not Exported to AVEXE
	Other Runtime Options
	Set Aurora Vision Executor as the "system shell"
	Startup Applications
	Startup Project
	Remote Access to the Runtime Application
	Introduction
	Usage
	Remote Image Acquisition
	Introduction
	Usage
	Performing General Calculations
	Introduction
	Example
	Creating Formula Blocks
	Syntax and Semantics
	Managing Projects with Project Explorer
	Introduction
	Opening Macrofilters
	Macrofilter Counter
	Global Parameters
	Modules
	Importing Modules
	Locking Modules
	Keyboard Shortcuts
	Introduction
	Table of Contents
	Shortcuts Table
	Working with 3D data
	Introduction
	Toolbar
	Using a computer mouse
	Preview
	HMI
	Creating Deep Learning Model
	Contents:
	Introduction
	Workflow
	Detecting anomalies 2 (classification-based approach)
	1. Marking Good and Bad samples and dividing them into Test, Training and Validation data.
	2. Configuring augmentations
	3. Reducing region of interest
	4. Setting training parameters
	5. Analyzing results
	Interactive histogram tool
	Detecting features (segmentation)
	1. Defining feature classes (Marking class)
	2. Reducing region of interest
	3. Setting training parameters
	4. Model training
	5. Result analysis
	Classifying objects
	1. Editing number of classes
	2. Labeling samples
	3. Reducing region of interest
	4. Setting training parameters
	5. Performing training
	6. Analyzing results
	Segmenting instances (deprecated)
	1. Defining object classes
	2. Labeling objects
	3. Reducing region of interest
	4. Setting training parameters
	5. Performing training
	6. Analyzing results
	Locating points
	1. Defining classes
	2. Marking key points
	3. Reducing region of interest
	4. Setting training parameters
	5. Performing training
	6. Analyzing results
	Locating objects
	1. Defining classes
	2. Marking bounding rectangles
	3. Reducing region of interest
	4. Setting training parameters
	5. Performing training
	6. Analyzing results
	Tips and tricks
	Auto label
	Auto assign sets
	Model history
	Report generator
	Automated Training
	See also:
	Managing Workspaces
	Using Filmstrip Control
	Overview
	Common Tasks
	See Also

